Advanced Math - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Advanced Math

 

conjugate and RootOf

eval

Gröbner Bases

product

Series and Limit Computations

Symbolic Integration

Symbolic Summation

conjugate and RootOf

The conjugate command now has extended support for RootOf expressions. You can now find the conjugate of the following:

• 

Indexed RootOfs

• 

RootOf expressions with a numerical selector and real coefficients

The following examples return unevaluated in Maple 2015 and earlier.

conjugateRootOfx5+x21,index=2

RootOf_Z5+_Z21,index=5

(1.1)

conjugateRootOfx2+ 3x+1,1+I

RootOf_Z2+3_Z+1,1I

(1.2)

eval

For indefinite integrals, sums, and products, as well as for differentiations, the eval command now supports an additive change of the variable.

 

fx ⅆxx=a|f(x)x=x+c

∫fx+cⅆx

(2.1)

xfxx=a|f(x)x=x+c

xfx+c

(2.2)

f'xx=a|f(x)x=x+c

Dfx+c

(2.3)

xfxx=a|f(x)x=x+c

xfx+c

(2.4)

 

 

Gröbner Bases

Maple 2016 includes a new C implementation of the F4 algorithm for computing Gröbner bases, replacing FGb. The new code is generally faster and uses multiple threads. The benchmarks below show real time on a quad core Intel Core i5 4590 3.3 GHz computer using a logarithmic scale. The new code supports primes up to 2311, an increase over FGb's 16-bit primes. To compute over the rationals, Maple uses Chinese remaindering and rational reconstruction.

 

 

 

product

Maple 2016 includes improved handling of "product over RootOf" cases. The following example returns unevaluated in Maple 2015 and earlier:

R = RootOfz22xRootOfz2R,z

x42

(4.1)

Series and Limit Computations

A number of improvements were made to series and limit computations in Maple.

The following series and asymptotic functions were added:

• 

Asymptotic expansions of Airy functions at ∞

• 

Series and asymptotic expansions of hypergeometric functions

• 

Series expansions of abs and signum in the real case

• 

Series expansion of GAMMA function at a symbolic pole

• 

Asymptotic expansion of incomplete GAMMA function w.r.t. the parameter

• 

Asymptotic expansion of Hurwitz Zeta function

• 

Series and asymptotic expansions of harmonic numbers

• 

Series expansions of ln and related functions with a logarithmic branch cut depending on a real parameter were improved.

• 

Finally, limit computations of oscillating functions were improved.

 

New Series Expansions

The following series expansions could not be computed in earlier versions of Maple:

F1 2  functions at 1

serieshypergeom1,1,13,1x,x

89π3x7/3+3227π3x4/31681π3x1/3+4732729π3x2/3+635x402187π3x5/3+36455x2646561π3x8/3+811820x3+Ox11/3

(5.1.1)

The case where the lower parameter minus the sum of the upper parameters is an integer is supported.

serieshypergeom12,32,1,1x,x

2πx+12lnx1+4ln2π+1238lnx1316+32ln2πx+121564lnx916+1516ln2πx2+121751024lnx525512288+175256ln2πx3+12220516384lnx1129132768+22054096ln2πx4+Ox5

(5.1.2)

The Γ function at a symbolic pole.

seriesΓx,x=n,3 assuming nnonposint

11nΓ1nxn+Ψ1n1nΓ1n+16π21n12Ψ1,1nΓ1n+12Ψ1n2Γ1n1nΓ1n+Ψ1n21nΓ1nxn+16Ψ2,1nΓ1n12Ψ1,1nΨ1nΓ1n16Ψ1n3Γ1n1nΓ1nΨ1n12Ψ1,1nΓ1n+12Ψ1n2Γ1n1nΓ1n+163Ψ1n2+π23Ψ1,1nΨ1n1nΓ1nxn2+7360π41n124Ψ3,1nΓ1n+16Ψ2,1nΨ1nΓ1n+18Ψ1,1n2Γ1n+14Ψ1,1nΨ1n2Γ1n+124Ψ1n4Γ1n1nΓ1nΨ1n16Ψ2,1nΓ1n12Ψ1,1nΨ1nΓ1n16Ψ1n3Γ1n1nΓ1n163Ψ1n2+π23Ψ1,1n12Ψ1,1nΓ1n+12Ψ1n2Γ1nΓ1n1n+16Ψ1n3+Ψ1nπ23Ψ1,1nΨ1n+Ψ2,1nΨ1n1nΓ1nxn3+Oxn4

(5.1.3)

The harmonic function at a negative integer.

seriesharmonic1+ n,n

n1+16π2nζ3n2+190π4n3ζ5n4+1945π6n5+On6

(5.1.4)

seriesharmonic2+ n,2,n

n21+2+2ζ3n+3130π4n2+4+4ζ5n3+51189π6n4+6+6ζ7n5+On6

(5.1.5)

 

New Asymptotic Expansions

The following asymptotic expansions could not be computed in earlier versions of Maple:

Airy functions at :

seriesAiryAi x,x=

sin23x3/2+14π1x1/4π548cos23x3/2+14π1x7/4π3854608sin23x3/2+14π1x13/4π+85085663552cos23x3/2+14π1x19/4π+O1x25/4

(5.2.1)

seriesAiryBi1,x,x=∞

sin23x3/2+14ππ1x1/4+748cos23x3/2+14π1x5/4π+4554608sin23x3/2+14π1x11/4π95095663552cos23x3/2+14π1x17/4π+O1x23/4

(5.2.2)

Hypergeometric functions w.r.t. the argument:

asympthypergeom1,12,,x,x

12Iπ1x12Iπ1x+23x+14Iπ1x3/2415x2112Iπ1x5/2+8105x3+148Iπ1x7/216945x41240Iπ1x9/2+3210395x5+O1x11/2

(5.2.3)

asympthypergeom13,2,x,x

131x7/3Γ2328271x10/3Γ239802431x13/3Γ2312740065611x16/3Γ23+O1x19/3ⅇx

(5.2.4)

asympthypergeom13,1,2,x,x

143Γ231x13/12π3/2+231923Γ231x19/12π3/2+8363552963Γ231x25/12π3/2+2373258847363Γ231x31/12π3/2+93072827515288238083Γ231x37/12π3/2+123511351105733835427843Γ231x43/12π3/2+O1x49/12ⅇ21x

(5.2.5)

Cases where the two upper parameters of a hypergeom function differ by an integer are handled as well:

asympthypergeom32,12, 32, x,x

14I1x3/2+34I1xI316lnx+316Iπ+932+38ln21x+132I1x3/2+3512I1x5/2+1512I1x7/2+O1x9/2

(5.2.6)

asympthypergeom52,32,1,1,x,x

25675π3/21x5/2+1609π3/21x3/2+15π3/21x+581xπ3/2+5307212lnx12γ72ln2+471x3/2π3/2+94096060lnx60γ360ln2+2831x5/2π3/2+O1x7/2

(5.2.7)

Hypergeometric functions w.r.t. a parameter, when the function is actually elementary:

asympthypergeom k, , zk, k

ⅇz+12ⅇzz2k+ⅇz13z3+18z4k2+ⅇz14z4+16z5+148z6k3+ⅇz15z5+1372z6+124z7+1384z8k4+O1k5

(5.2.8)

converthypergeomk, , zk,elementary

kzkk

(5.2.9)

Hurwitz ζ and incomplete Γ functions w.r.t. the parameter:

asymptZeta0,13,v,v

11v2/3+121v1/31541v4/3+772901v10/3+O1v16/3

(5.2.10)

asymptΓv,x,v

2π1v+1122π1v3/2+12882π1v5/2139518402π1v7/257124883202π1v9/2+1638792090188802π1v11/2+O1v13/21vvⅇv

(5.2.11)

The harmonic function:

asymptharmonicn,n

lnn+γ+12n112n2+1120n4+O1n6

(5.2.12)

asymptharmonicn,23,n

11n1/3+ζ23561n2/3+25541n5/310271n8/3+2397291n11/32207291n14/3+O1n17/3

(5.2.13)

Two-sided and One-sided Expansions of abs and signum

Maple can now compute two-sided expansions of signum at finite nonzero points.

seriessignuma+x,x,4 assuming xreal

signuma+aℜaa3+1ax+a12a2+32ℜa2a4aℜaa3x2+a32ℜaa452ℜa3a6a+12a2+32ℜa2a4ax3+Ox4

(5.3.1)

One-sided expansions of abs and signum at 0 and asymptotic expansions can now also be computed.

seriesabssinx,x assuming x>0

x16x3+1120x5+Ox7

(5.3.2)

seriessignumsinx,x assuming x>0

1

(5.3.3)

asymptabsarccotx2x11,x

1x2+111x3+1121x4+11331x5+O1x6

(5.3.4)

Expansions of Functions with a Logarithmic Branch Cut Depending on a Real Parameter

For functions ln, arctan, arccot, arctanh, arccoth, Ei, Ci and Chi depending on a parameter, Maple now computes series expansions that are correct for all real values of the parameter (and for all complex values of the series variable sufficiently close to the expansion point).

serieslna+x,x assuming areal

lna+12IsignumacsgnIa+xcsgnIa+xπ+1ax12a2x2+13a3x314a4x4+15a5x5+Ox6

(5.4.1)

serieslna x,x assuming areal

lna+lnx+12IcsgnIxsignumacsgnIxπ

(5.4.2)

seriesarctanha+x,x,4 assuming areal

I14csgnIsignuma+Ia+Ixπ1+signuma21+Iℜarctanha+1a2+1xaa21a2+1x213IIa21+4Ia2a212a2+1x3+Ox4

(5.4.3)

seriesChia x,x assuming areal

γ+lna+lnx+12IcsgnIxsignumacsgnIxπ+14a2x2+196a4x4+Ox6

(5.4.4)

Limits of Oscillating Functions

Limit computations for functions containing oscillating terms were improved. The following limits could not be computed in Maple 2015 or earlier.

limxⅇ x tanx

undefined

(5.5.1)

limx∞sinhx BesselJ1,x xcoshxcosx2

2π..2π

(5.5.2)

limx∞1x1x21x

0

(5.5.3)

Symbolic Integration

The results for definite integration of rational functions have been improved. In certain cases when the denominator is of degree 4 or higher, the result is now simpler.

 

Maple 2016

Maple 2015

01x4x+1 ⅆx

_R=RootOf_Z4_Z+1ln_R4_R31

(6.1)

 

01x4x+1 ⅆx

_R=RootOf229_Z4+18_Z28_Z+1_Rln206164_R3+68764_R2+39164_R2764

(6.2)

01x4+6 x+13 ⅆx

153017118852964318852964_R=RootOf_Z4+6_Z+11944_R233429_R+24169ln_R2_R3+3

(6.3)

 

01x4+6 x+13 ⅆx

15301711885296439426482_R=RootOf8684_Z4194281841538_Z2+201567506232261_Z1531566190081040464_Rln162056108449387195299530267357790657410141532829_R3+253002615879401450445845355761303849567084999_R2125011682336520917573411523898216080210433763517237417267771759_R1530662817658400954319300345845355761303849567084999

(6.4)

 

 

In addition, Maple can now compute more definite integrals that could not be computed in Maple 2015 or earlier.

 

0∞π2arctanx9 ⅆx

12_R=RootOf_Z6_Z3+1_R3+1ln_R_R2_R3113π3

(6.5)

0∞cosxBesselJ3,x ⅆx

∞

(6.6)

111+1x5+x2+2+1(x5+x2+2)3 ⅆx

25643141911260823328_R=RootOf_Z5+_Z2+2ln1_R_R5_R3+231260823328_R=RootOf_Z5+_Z2+2675729_R319964900_R25401458_R+75189729ln1_R_R5_R3+2+_R=RootOf_Z5+_Z2+2ln1_R_R5_R3+2+31260823328_R=RootOf_Z5+_Z2+2675729_R319964900_R25401458_R+75189729ln1_R_R5_R3+2

(6.7)

 

Symbolic Summation

Maple 2016 includes a number of improvements to Maple's symbolic summation engine:

• 

Improved handling of definite parametric sums

• 

New option formal for sum

• 

Support for Jacobi Theta sums

• 

Support for piecewise expressions with more than two branches

• 

Improved divergence testing for infinite sums

• 

Better support for doubly infinite sums

 

Parametric Sums and Option Formal

Maple 2016 includes several improvements for parametric sums:

• 

The scope of the option parametric was extended so it now works for more types of definite sums.

• 

For infinite sums, Maple is now more careful regarding potentially divergent parametric sums. The behavior can be controlled using assumptions, the _EnvFormal environment variable, or, equivalently, a new option formal to the sum command.

 

By default, Maple returns a generic answer for certain types of parametric definite hypergeometric sums.

With option parametric, a complete case distinction is now returned for hypergeometric sums with a single parameter that is valid for all integer values of the parameter:

sum1k binomialm,k k,k=0..m

0

(7.1.1)

sumbinomialn,4 k,k=0..n

142n+141+In+141In

(7.1.2)

sum1k binomialm,k k,k=0..m,parametric

{0m01m=102m

(7.1.3)

sumbinomialn,4 k,k=0..n,parametric

{k=0nbinomialn,4kn11n=0142n+141+In+141In1n

(7.1.4)

 

The behavior for infinite parametric sums of geometric, hypergeometric, polylog, or Zeta type has changed.

Without any assumptions on the parameter, such sums now return unevaluated.

The same sums with appropriate assumptions:

k=0∞k2xk

k=0∞k2xk

(7.1.5)

k=0∞binomialn+k,k xk

k=0∞binomialn+k,kxk

(7.1.6)

k=1∞xkk2

k=1∞xkk2

(7.1.7)

k=1∞kn

k=1∞kn

(7.1.8)

k&equals;0k2xk assuming 1<x<1

xx&plus;1x13

(7.1.9)

k&equals;0k2xk assuming x&gt;1

&infin;

(7.1.10)

k&equals;0binomialn&plus;k&comma;k xk assuming 1<x<1

1x1nx1

(7.1.11)

k&equals;1xkk2 assuming 1<x<1

polylog2&comma;x

(7.1.12)

k&equals;1kn assuming Ren <1

&zeta;n

(7.1.13)

k&equals;1kn assuming n 1

&infin;

(7.1.14)

 

Alternatively, formal answers can be obtained by either setting the environment variable _EnvFormaltrue, or by specifying the new option formal. (This even works for non-parametric divergent sums.)

For geometric, polylog, and Zeta type sums, option parametric can also be used:

_EnvFormal  true&colon;

k&equals;0k2 xk

1&plus;xxx13

(7.1.15)

k&equals;0binomialn&plus;k&comma;k xk

1x&plus;1n&plus;1

(7.1.16)

_EnvFormal&apos;_EnvFormal&apos;&colon;

sumxkk2&comma;k&equals;1..

k&equals;1&infin;xkk2

(7.1.17)

sumxkk2&comma;k&equals;1..&comma;formal

polylog2&comma;x

(7.1.18)

sumk3&comma;k&equals;1..&comma;formal&equals;ζ3

1120&equals;1120

(7.1.19)

sumk2xk&comma;k&equals;0..&comma;parametric

&lcub;1&plus;xxx13x<1&infin;1xundefinedotherwise

(7.1.20)

sumxkk2&comma;k&equals;1..infinity&comma;parametric

&lcub;polylog2&comma;xx=−1Orx=1Orx<1&infin;1xundefinedotherwise

(7.1.21)

sumkn&comma;k&equals;1..infinity&comma;parametric

&lcub;&zeta;n1<&real;n&infin;n1undefinedotherwise

(7.1.22)

 

Jacobi Theta

Maple now recognizes infinite sums that can be expressed in terms of Jacobi Theta  functions.

n&equals;0&infin;rn2 assuming 0<r<1

12JacobiTheta30&comma;r&plus;12

(7.2.1)

sumrn2&comma;n&equals;0..&comma;parametric

&lcub;12JacobiTheta30&comma;r&plus;12r<1&infin;1rundefinedotherwise

(7.2.2)

n&equals;1&infin;2n2ncos2 n&plus;1t

1221&sol;4JacobiTheta2t&comma;12cost

(7.2.3)

Piecewise Sums

Maple now supports piecewise summands with integer branch points and more than two branches.

n&equals;0&infin;0n0an12notherwise

a&plus;12

(7.3.1)

n&equals;0&infin;n2n&equals;010nn<10xn&equals;10xnotherwiseassuming 1<x<1

9876543210x1110x11x12&plus;10x

(7.3.2)

Sums Diverging to ±&infin;

For some non-hypergeometric infinite sums without parameters, Maple now detects when they diverge to ±&infin;.

n&equals;1&infin;11nn

&infin;

(7.4.1)

n&equals;0&infin; cosh2 n&plus;1&pi;cos2 n&plus;1&pi;

&infin;

(7.4.2)

Doubly Infinite Sums

Maple now has improved support for doubly infinite sums, by splitting them into two one-sided infinite sums.

f  i1i4 i21&colon;

i&equals;&infin;&infin;fi

12&pi;

(7.5.1)

i&equals;1fi

1214&pi;

(7.5.2)

i&equals;1fi

1214&pi;

(7.5.3)

&plus;f0&plus;

12&pi;

(7.5.4)