Formal Power Series - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : System : Information : Updates : Maple 2022 : Formal Power Series

Formal Power Series

The convert/FormalPowerSeries functionality was completely rewritten for Maple 2022. It offers a number of advantages over previous versions:

 

• 

Closed-form solutions can be found in a number of cases where previous versions failed.

• 

Solutions in terms of m-fold hypergeometric sequences for arbitrary positive integers m are now supported in more cases than before.

• 

Notwithstanding the name, formal Laurent and Puiseux series (i.e., with negative or fractional exponents) can be computed as well, now in more cases than before.

• 

convert/FormalPowerSeries will automatically attempt to return the series coefficients in purely real form, making the previous option makereal obsolete.

• 

In a number of cases, the new code returns more compact answers than previous versions.

• 

If a closed form expression for the power series coefficients cannot be found, and a recurrence relation of degree 1 or 2 exists, it will be returned instead. Previously, only linear recurrences could be computed, and would only be returned if option recurrence was specified.

• 

When a recurrence relation is returned, now the initial conditions are given as well.

• 

Additional options give more control over the underlying algorithm(s) used and the form of the output.

 

Maple 2021

Maple 2022

More closed-form solutions, notably, for sums of several terms and Puiseux solutions.

convertz2 + z36arctanz,FormalPowerSeries

12z+16z3arctanz

(1)

mapconvert,expandz2 + z36arctanz,FormalPowerSeries 

k=0−1kz2k+24k+2+k=0−1kz2k+412k+6

(2)

convertz2 + z36arctanz,FormalPowerSeries

z26+59+n=04n5−1nz2n32n12n3

(3)

convertarctanz+arcsinz,FormalPowerSeries

arctanz+arcsinz

(4)

mapconvert,arctanz+arcsinz,FormalPowerSeries

k=0−1kz2k+12k+1+k=02k!4kz2k+1k!22k+1

(5)

convertarctanz+arcsinz,FormalPowerSeries

n=0−1nn!2+2n!4nz2n+12n+1n!2

(6)

convertarctanz+arcsinz,FormalPowerSeries,output=expanded

n=0−1nz2n+12n+1+n=02n!4nz2n+12n+1n!2

(7)

convert114 z2z24 14 z, FormalPowerSeries

114z2z2414z

(8)

convert114 z2z24 14 z, FormalPowerSeries

n=02n+2!n+2n+1zn+4n+2!2

(9)

convert8 z3+11,FormalPowerSeries

8z3+11

(10)

convert8 z3+11,FormalPowerSeries

n=0−1n2n+12n+14n!z3n+322n+1!2

(11)

Solutions in purely real form by default.

convertsinz+z cosz,FormalPowerSeries

k=0IIkk+12k!+I−Ikk+12k!zk

(12)

convertsinz+z cosz,FormalPowerSeries,makereal

k=0sinkπ2k+1zkk!

(13)

convertsinz+z cosz,FormalPowerSeries

n=02−1nn+1z2n+12n+1!

(14)

convertln1+z+z2+z3,FormalPowerSeries

k=0−1k+1k+1Ik+1k+1−Ik+1k+1zk+1

(15)

convertln1+z+z2+z3,FormalPowerSeries,makereal

k=0−1k+2sinkπ2zk+1k+1

(16)

convertln1+z+z2+z3,FormalPowerSeries

n=0−1nzn+1n+1+n=0−1nz2n+2n+1

(17)

convertz6+3 z23 z4+1,FormalPowerSeries 

z23+k=023I3334k3343kI3334kI3334k3343k3343k+I3334kI3334k3343k3343kI3334k3343kzk9I3334k3343kI3334k3343k

(18)

convertz6+3 z23 z4+1,FormalPowerSeries,makereal

z23+k=02zk3k4+122coskπ2−1k19

(19)

convertz6+3 z23 z4+1,FormalPowerSeries

z23+n=083n1z4n+2

(20)

More compact answers.

convert1q__1z2q__2z3,FormalPowerSeries,z 

k=02−123q__213kq__1kq__1kq__213k−123q__13+2−113q__213kq__1kq__1kq__213kq__243−123q__1−123q__213k−113q__213kq__1kq__213k−123q__132q__2+−123q__213k−113q__213kq__1kq__213k−123q__132q__2+2−123q__213kq__1kq__1kq__213k−113q__13+−123q__213k−113q__213kq__1kq__213k−113q__132q__2−123q__213k−113q__213kq__1kq__213k−113q__132q__22−113q__213kq__1kq__1kq__213kq__223q__12+2−123q__213k−113q__213kq__1kq__1kq__243q__12−123q__213kq__1kq__1kq__213kq__243q__12−123q__213k−113q__213kq__1kq__213kq__222−123q__213k−113q__213kq__1kq__213kq__222−123q__213kq__1kq__1kq__213kq__243−123q__1+4−123q__213kq__1kq__1kq__213kq__223−123q__12+2−123q__213k−113q__213kq__1kq__1kq__223−113q__122−123q__213kq__1kq__1kq__213kq__223−113q__12+2−123q__213kq__1kq__1kq__213kq__223q__122−123q__213k−113q__213kq__1kq__1kq__223−123q__122−113q__213kq__1kq__1kq__213kq__223−123q__12+−123q__213k−113q__213kq__1kq__213kq__22−123+−123q__213k−113q__213kq__1kq__213kq__22−123−123q__213k−113q__213kq__1kq__213kq__22−113−123q__213k−113q__213kq__1kq__213kq__22−113+2−123q__213k−113q__213kq__1kq__213kq__132q__22−123q__213k−113q__213kq__1kq__213kq__132q__2+2−123q__213k−113q__213kq__1kq__1kq__13+2−113q__213kq__1kq__1kq__213kq__13zk2q__213kq__1kq__1+q__213q__1kq__1q__1+q__213−113q__213kq__1+−113q__213q__1+−113q__213−123q__213k−123q__213+q__1−123q__213q__1−113+12−1131q__2

(21)

convert1q__1z2q__2z3,FormalPowerSeries,z

n=0q__12n2+−1nq__12n2+2q__213n3q__1522q__1n2+12q__2−1nq__11n2q__22+2q__223n3q__1q__11n2q__22zn2q__13q__22q__132+q__2+n=0q__1q__2n1z3nq__243+q__223q__1+q__12+n=0q__2n23z3n+1q__243+q__223q__1+q__12

(22)

Recurrence relations returned automatically if no closed form can be found, with initial conditions.
Non-linear (degree 2) recurrences can be computed.

convertarcsinz3,FormalPowerSeries 

arcsinz3

(23)

convertarcsinz3,FormalPowerSeries,recurrence  

k4ak2k+1k+2k2+2k+2ak+2+k+1k+2k+3k+4ak+4=0

(24)

convertarcsinz3,FormalPowerSeries

n=0Anzn+1,RESoln4+4n3+6n2+4n+1An+2n418n362n298n60An+2+n4+14n3+71n2+154n+120An+4=0,An,A0=0,A1=0,A2=1,A3=0,INFO

(25)

convertzⅇz1,FormalPowerSeries 

zⅇz1

(26)

convertzⅇz1,FormalPowerSeries,recurrence 

zⅇz1

(27)

 

convertzⅇz1,FormalPowerSeries

n=0Anzn,RESolAn+3+An+2+_k=1n+2A_kAn+3_kn+4,An,A0=1,A1=12,A2=112,INFO

(28)

convertLambertWz,FormalPowerSeries

LambertWz

(29)

convertLambertWz,FormalPowerSeries,recurrence

LambertWz

(30)

convertLambertWz,FormalPowerSeries

n=0Anzn,RESolAn+4+An+3+_k=1n+2_k+1A_k+1An+3_kn+3,An,A0=0,A1=1,A2=−1,A3=32,INFO

(31)

 

New method option (by default, all three methods are tried in sequence).

 

convertarcsinz2,FormalPowerSeries

n=02n!24nz2n+22n+2!

(32)

convertarcsinz2,FormalPowerSeries,method=hypergeometric

n=02n!24nz2n+22n+2!

(33)

convertarcsinz2,FormalPowerSeries,method=holonomic

n=0Anzn+1,RESoln22n1An+n2+5n+6An+2=0,An,A0=0,A1=1,INFO

(34)

convertarcsinz2,FormalPowerSeries,method=quadratic

n=0Anzn,RESolAn+44n+2An+2+_k=2n_k+1A_k+1n+3_kAn+3_k+_k=2n+2_k+1A_k+1n+5_kAn+5_k4n+3,An,A0=0,A1=0,A2=1,A3=0,INFO

(35)

 

converttanz,FormalPowerSeries

n=0Anzn,RESolAn+3+2An+1+_k=1n2_k+1A_k+1An+1_kn+2n+3,An,A0=0,A1=1,A2=0,INFO

(36)

converttanz,FormalPowerSeries,method=hypergeometric

tanz

(37)

converttanz,FormalPowerSeries,method=holonomic

tanz

(38)

converttanz,FormalPowerSeries,method=quadratic

n=0Anzn,RESolAn+3+2An+1+_k=1n2_k+1A_k+1An+1_kn+2n+3,An,A0=0,A1=1,A2=0,INFO

(39)

New output option (default: combined).

 

convertsinz+cosz3,FormalPowerSeries

n=0−1n9n3z2n22n!+n=03−1n9n+1z2n+122n+1!

(40)

convertsinz+cosz3,FormalPowerSeries,output=combined

n=0−1n9n3z2n22n!+n=03−1n9n+1z2n+122n+1!

(41)

convertsinz+cosz3,FormalPowerSeries,output=expanded

n=0−1n9nz2n22n!+n=03−1nz2n22n!+n=03−1n9nz2n+122n+1!+n=03−1nz2n+122n+1!

(42)