Charpoly
compute characteristic polynomial function over a ring of characteristic p
Calling Sequence
Parameters
Description
Examples
Charpoly(A,x) mod p
A
-
square Matrix
x
name; specifies the variable in the characteristic polynomial
p
non-zero integer; specifies the characteristic of the ring
Given an n by n matrix A over a ring F of prime characteristic p, the Charpoly( A, x ) mod p calling sequence computes the characteristic polynomial of A, a monic polynomial in x of degree n over F.
For matrices over the prime field GF⁡p, for p a prime, Maple uses an O⁡n3 algorithm. Otherwise, Maple uses an O⁡n4 division free algorithm.
A≔Matrix⁡2,1,0,1,2,1,0,1,2
A≔210121012
Charpoly⁡A,xmod3
x3+x+2
p≔3:alias⁡a=RootOf⁡x2+1modp:
A≔Matrix⁡1,a,0,a,1,0,0,a
A≔1a0a1000a
C≔Charpoly⁡A,xmodp
C≔x3+2⁢2+a⁢x2+2⁢1+a⁢x+a
Factor⁡Cmodp
x+2+2⁢a⁢x+2⁢a⁢x+a+2
A≔Matrix⁡1,t,1t,1t,1,t,t,1t,1
A≔1t1t1t1tt1t1
Charpoly⁡A,xmod2
x3+x2+t6+1t3
See Also
Factor
LinearAlgebra[CharacteristicPolynomial]
LinearAlgebra[Modular]
mod
Modular[CharacteristicPolynomial]
RootOf
Download Help Document