ComplexBox
Arithmetic
arithmetic for ComplexBox objects
+
compute a sum involving ComplexBox objects
*
compute a product involving ComplexBox objects
^
compute a power involving ComplexBox objects
-
compute the negative of ComplexBox object
/
compute the reciprocal of ComplexBox object
conjugate
compute the conjugate of ComplexBox object
root
compute a root of ComplexBox object
Calling Sequence
Parameters
Description
Examples
Compatibility
-b
1/b
b1 + b2
b1 * b2
b1 ^ b2
b1 ^ z
conjugate( b )
root( b, n )
b
ComplexBox object
b1
b2
z
extended complex numeric value
n
non-negative integer
The arithmetic operators `+`, `*`, `^`, `-` and `/` are available as methods for ComplexBox objects.
Operation
unary negation
unary inversion
addition
multiplication
exponentiation
conjugation
n-th root
Addition (+) and multiplication (*) are n-ary operators that support more than two operands. The operators of negation (-) and inversion (/) are unary. The non-associative exponentiation operator (^) is binary.
The conjugate of a ComplexBox object b can be computed by using the conjugate( b ) command.
To compute roots of a ComplexBox object b, use the root( b, n ) command.
−ComplexBox⁡2.3+5.7⁢I
⟨ComplexBox: [-2.3 +/- 2.32831e-10]+[-5.7 +/- 4.65661e-10]⋅I⟩
ComplexBox⁡2.3+5.7⁢I+ComplexBox⁡1.1−0.321⁢I
⟨ComplexBox: [3.4 +/- 5.82077e-10]+[5.379 +/- 4.94765e-10]⋅I⟩
ComplexBox⁡2.3+5.7⁢I−ComplexBox⁡1.1−0.321⁢I
⟨ComplexBox: [1.2 +/- 3.49246e-10]+[6.021 +/- 4.94765e-10]⋅I⟩
ComplexBox⁡2.3+5.7⁢I⁢ComplexBox⁡1.1−0.321⁢I
⟨ComplexBox: [4.3597 +/- 1.3049e-09]+[5.5317 +/- 1.78313e-09]⋅I⟩
ComplexBox⁡2.3+5.7⁢IComplexBox⁡1.1−0.321⁢I
⟨ComplexBox: [0.533342 +/- 1.40432e-09]+[5.33746 +/- 2.33351e-09]⋅I⟩
⟨ComplexBox: [8.0897 +/- 1.24388e-08]+[7.13964 +/- 1.16935e-08]⋅I⟩
conjugate⁡ComplexBox⁡2.3+5.7⁢I
⟨ComplexBox: [2.3 +/- 2.32831e-10]+[-5.7 +/- 4.65661e-10]⋅I⟩
p≔2⁢x
eval⁡p,x=ComplexBox⁡2.3+5.7⁢I
⟨ComplexBox: [4.6 +/- 4.65661e-10]+[11.4 +/- 9.31323e-10]⋅I⟩
p≔2⁢x2
⟨ComplexBox: [-54.4 +/- 1.64844e-08]+[52.44 +/- 1.33179e-08]⋅I⟩
p≔2⁢x2−x
⟨ComplexBox: [-56.7 +/- 2.04425e-08]+[46.74 +/- 1.75089e-08]⋅I⟩
p≔2⁢x2−3⁢x
⟨ComplexBox: [-61.3 +/- 2.13739e-08]+[35.34 +/- 2.03028e-08]⋅I⟩
p≔randpoly⁡x:
⟨ComplexBox: [-42241.5 +/- 9.30244e-05]+[-7262.81 +/- 6.90875e-05]⋅I⟩
q≔randpoly⁡x,y,degree=30,dense:
eval⁡p3q,x=ComplexBox⁡1.1−0.321⁢I,y=ComplexBox⁡2.3+5.7⁢I
⟨ComplexBox: [7.65384e-20 +/- 6.73062e-27]+[1.23419e-20 +/- 6.81317e-27]⋅I⟩
root⁡ComplexBox⁡2.3+5.7⁢I,2
⟨ComplexBox: [2.05506 +/- 1.09856e-10]+[1.38682 +/- 3.03849e-10]⋅I⟩
root⁡ComplexBox⁡2.3+5.7⁢I,3
⟨ComplexBox: [1.69021 +/- 4.06526e-10]+[0.706168 +/- 2.22582e-10]⋅I⟩
root⁡ComplexBox⁡2.3+5.7⁢I,10
⟨ComplexBox: [1.19068 +/- 3.15463e-10]+[0.142034 +/- 4.78971e-11]⋅I⟩
The ComplexBox[Arithmetic], ComplexBox:-+, ComplexBox:-*, ComplexBox:-^, ComplexBox:--, ComplexBox:-/, ComplexBox:-conjugate and ComplexBox:-root commands were introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
See Also
RealBox
Download Help Document