Elementary - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ComplexBox

  

Elementary

  

elementary functions for ComplexBox objects

  

Re

  

compute the real part of a ComplexBox object

  

Im

  

compute the imaginary part of a ComplexBox object

  

abs

  

compute the absolute value of a ComplexBox object

  

argument

  

compute the argument of a ComplexBox object

  

sqrt

  

compute the square root of a ComplexBox object

  

exp

  

compute the exponential of a ComplexBox object

  

log

  

compute the logarithm of a ComplexBox object

  

rsqrt

  

compute the reciprocal square root of a ComplexBox object

  

expm1

  

compute the exponential of a ComplexBox object minus one

  

expPiI

  

compute the exponential of Pi*I times a ComplexBox object

  

log1p

  

compute the logarithm of a ComplexBox object minus one

  

signum

  

compute the signum of a ComplexBox object

  

csgn

  

compute the sign of a ComplexBox object

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Re( b )

Im( b )

abs( b )

argument( b )

sqrt( b )

exp( b )

log( b )

rsqrt( b )

expm1( b )

expPiI( b )

log1p( b )

signum( b )

csgn( b )

Parameters

b

-

ComplexBox object

precopt

-

(optional) equation of the form precision = n, where n is a positive integer

Description

• 

These are the standard basic elementary functions defined for ComplexBox objects.

sqrt

exp

log

abs

argument

signum

csgn

Re

Im

• 

They override the standard Maple procedures for ComplexBox objects.

• 

Additionally, via "arblib", there are a number of variations that are not defined for standard numerics in Maple.

rsqrt( b )

1/sqrt( b )

expm1( b )

exp( b ) - 1

expPiI( b )

exp( Pi*b*I )

log1p( b )

log( 1 + b )

• 

Use the 'precision' = n option to control the precision used in these methods. For more details on precision, see BoxPrecision.

Examples

bComplexBox2.3+11.35I

bComplexBox: [2.3 +/- 2.32831e-10]+[11.35 +/- 9.31323e-10]I

(1)

b

RealBox: 2.3±2.32831ⅇ-10

(2)

b

RealBox: 11.35±9.31323ⅇ-10

(3)

absb

RealBox: 11.5807±1.97203ⅇ-09

(4)

argumentb

RealBox: 1.37086±1.7137ⅇ-10

(5)

signumb

ComplexBox: [0.198606 +/- 8.5212e-11]+[0.980079 +/- 3.88106e-10]I

(6)

csgnb

RealBox: 1±0

(7)

csgn1,b

RealBox: 0±0

(8)

Note the exception raised in the following example, due to non-differentiability.

csgn1,ComplexBox4.1I

Error, (in ComplexBox:-csgn) csgn is not differentiable on the imaginary axis

csgn0,ComplexBox0,1

RealBox: 1±0

(9)

csgn0,ComplexBox0,1

RealBox: -1±0

(10)

b:-sqrtb

ComplexBox: [2.63445 +/- 3.66495e-10]+[2.15415 +/- 5.18888e-10]I

(11)

rsqrtb

ComplexBox: [0.227487 +/- 6.46232e-11]+[-0.186012 +/- 5.43171e-11]I

(12)

expb

ComplexBox: [3.46156 +/- 1.05079e-08]+[-9.35425 +/- 7.86248e-09]I

(13)

expm1b

ComplexBox: [2.46156 +/- 9.94183e-09]+[-9.35425 +/- 6.5501e-09]I

(14)

expPiIb

ComplexBox: [1.92109e-16 +/- 1.79641e-24]+[2.64415e-16 +/- 2.33121e-24]I

(15)

logb

ComplexBox: [2.44934 +/- 3.15894e-10]+[1.37086 +/- 1.7137e-10]I

(16)

log1pb

ComplexBox: [2.46979 +/- 3.14239e-10]+[1.28785 +/- 1.75505e-10]I

(17)

Compatibility

• 

The ComplexBox[Elementary], ComplexBox:-Re, ComplexBox:-Im, ComplexBox:-abs, ComplexBox:-argument, ComplexBox:-sqrt, ComplexBox:-exp, ComplexBox:-log, ComplexBox:-rsqrt, ComplexBox:-expm1, ComplexBox:-expPiI, ComplexBox:-log1p, ComplexBox:-signum and ComplexBox:-csgn commands were introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

ComplexBox

RealBox

RealBox[Elementary]