StateObserver[Observer] - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ControlDesign[StateObserver]

  

Observer

  

construct the static gain (Luenberger) observer for a given system and observer gain

 

Calling Sequence

Parameters

Options

Description

Examples

Calling Sequence

Observer(sys, L, opts)

Parameters

sys

-

System; system object;

L

-

Matrix or Vector; observer gain

opts

-

(optional) equation(s) of the form option = value; specify options for the Observer command

Options

• 

parameters = {list, set}(name = complexcons)

  

Specifies numeric values for the parameters of sys. These values override any parameters previously specified for sys. The numeric value on the right-hand side of each equation is substituted for the name on the left-hand side in the sys equations. The default is the value of sys given by DynamicSystems:-SystemOptions(parameters).

Description

• 

The Observer command constructs the static gain (Luenberger) observer for the given system sys and observer gain L.

• 

The system sys is a continuous or discrete-time linear system object created using the DynamicSystems package. The system object must be in state-space (SS) form.

• 

All sys inputs are assumed known (deterministic), and all sys outputs are assumed to be measured.

• 

The Observer command returns the observer object in the state-space form. The observer system object gets the input(s) and output(s) of sys as inputs and generates the estimates of the state(s) and output(s) of sys as its outputs.

• 

Suppose the sys state-space realization is given as

x=Ax+Buy=Cx+Du

The observer equations are given by

xˆ=ALCx^+BLDLuy

x^y^=ICx^+00D0uy

• 

In the discrete-time domain, the Observer command uses the same state-space matrices as in the continuous-time case to generate estimates for state(s) xn and output(s) yn as x^n|n1 and y^n|n1, respectively, based on the past measurements up to yn-1. The sampling time of the generated observer object is the same as the sampling time of the system sys.

Examples

withControlDesign:

withDynamicSystems:

State-space system in continuous time (5 states, 3 inputs and 2 outputs)

AmatMatrix1,2,3,5,12,0,4,1,2,3,2,5,7,4,3,2,4,3,8,7,19,14,1,4,7:

BmatMatrix3,6,3,9,7,5,5,2,1,4,1,7,6,8,2:

CmatMatrix3,9,5,4,6,1,0,4,5,7:

DmatMatrix1,2,0,3,0,1:

sysStateSpaceAmat,Bmat,Cmat,Dmat:

PrintSystemsys

State Spacecontinuous2 output(s); 3 input(s); 5 state(s)inputvariable=u1t,u2t,u3toutputvariable=y1t,y2tstatevariable=x1t,x2t,x3t,x4t,x5ta=1−23−51204−12−3257−43−2438719141−47b=3639755214−176−82c=3954610−457d=1−2030−1

(1)

Desired observer poles

p3,4,5+3I,53I,7:

Get the observer gain Matrix L for the desired poles

LStateObserver:-PolePlacementsys,p

L5.613879995032024.25288865156742−3.33851876208652−2.638950666309182.084444931839460.857378214523429−0.743810167611425−0.2976171958150025.062902321183593.86362016334714

(2)

Construct the observer object for sys with gain L

ObsvStateObserver:-Observersys,L:

PrintSystemObsv

See Also

ControlDesign

ControlDesign[StateFeedback][PolePlacement]

ControlDesign[StateObserver][Ackermann]

ControlDesign[StateObserver][PolePlacement]