Fit - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DeepLearning/Model/Fit

fit model object to training data

 

Calling Sequence

Parameters

Options

Description

Details

Examples

Compatibility

Calling Sequence

mdl:-Fit(x, y, opts)

Parameters

mdl

-

a Model object

x

-

list, Array, DataFrame, DataSeries, Matrix, or Vector; input data

y

-

list, Array, DataFrame, DataSeries, Matrix, or Vector; target data

Options

• 

batchsize = posint or none

  

Number of samples per gradient update. If unspecified, batchsize will default to 32.

• 

epochs  = nonnegint

  

Number of epochs to train the model. An epoch is an iteration over the entire x and y data provided.

  

The model is not trained for a number of iterations given by epochs, but merely until the epoch of index epochs is reached.

• 

shuffle = truefalse

  

Whether or not to reshuffle the training data before each epoch.

Description

• 

Fit trains a Model on data for a fixed number of epochs.

Details

• 

The implementation of Fit uses the fit method from tf.keras.Model in the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.Model for more information on its use during TensorFlow computations.

Examples

withDeepLearning

AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros

(1)

v1Vector8,ii,datatype=float8

v11.2.3.4.5.6.7.8.

(2)

v2Vector8,1.0,1.0,5.0,11.0,19.0,29.0,41.0,55.0,datatype=float8

v2−1.1.5.11.19.29.41.55.

(3)

modelSequentialDenseLayer1,inputshape=1

modelDeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7f9113305790>

(4)

model:-Compileoptimizer=sgd&comma;loss=mean_squared_error

model:-Fitv1&comma;v2&comma;epochs=500

<Python object: <keras.src.callbacks.History object at 0x7f9112dfb890>>

(5)

model:-Evaluate10&comma;30

loss=1037.32287597656&comma;accuracy=0.

(6)

Compatibility

• 

The DeepLearning/Model/Fit command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

DeepLearning Overview