DeepLearning
SoftmaxLayer
softmax layer
Calling Sequence
Parameters
Options
Description
Details
Examples
Compatibility
SoftmaxLayer(dim, opts)
dim
-
positive integer
opts
one or more options as specified below
inputshape : list of integers or the symbol auto
Shape of the input Tensor, not including the batch axis.
With the default value auto, the shape is inferred. If inference is not possible, an error is issued.
This option need only be specified when this layer is the first in a Sequential model.
SoftmaxLayer(dim, opts) creates a softmax neural network layer. The input dim specifies the (zero-based) dimension of the along which the softmax normalization is applied.
This function is part of the DeepLearning package, so it can be used in the short form SoftmaxLayer(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[SoftmaxLayer](..).
The implementation of SoftmaxLayer uses tf.keras.layers.Softmax from the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.layers.Softmax for more information.
with⁡DeepLearning
AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros
model≔Sequential⁡SoftmaxLayer⁡1
model≔DeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7fa394e87750>
model:-Compile⁡
The DeepLearning[SoftmaxLayer] command was introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
See Also
DeepLearning Overview
DeepLearning,Tensor,Softmax
Download Help Document