DifferentialGeometry[DGNullSpace] - find the null space of a linear transformation acting on a vector space of vectors, differential forms, tensors
DifferentialGeometry[DGImageSpace] - find the image space of a linear transformation acting on a vector space of vectors, differential forms, tensors
Calling Sequence
Parameters
Description
Examples
DGNullSpace(L, A)
DGImageSpace(L, A)
L
-
a procedure, defining a linear transformation L:𝒜 →ℬ from a vector space 𝒜 of vectors, forms, tensors etc., to another vector space ℬ of vectors, forms, tensors
A
a list of vectors, forms, tensors etc., defining a basis for the vector space 𝒜
Let L:𝒜 →ℬ be a linear transformation. The null space of L is NL = {a ∈ 𝒜 | La = 0}. The image space of L is ImL = {b ∈ ℬ | b = La for some a ∈ 𝒜}.
The command DGNullSpace(L, A) returns a list of elements of 𝒜 which define a basis for the null space of L. The command DGImageSpace(L, A) returns a list of elements of ℬ which define a basis for the image space of L.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
Let V be a 4-dimensional space, let 𝒜 be the vector space of 1-forms on V, and let ℬ be the vector space of 2-forms on V. Fix a 1-form α on V, and define Lβ = α ∧β. We find the null space and image space of L.
DGsetup⁡x1,x2,x3,x4,V
frame name: V
A≔dx1,dx2,dx3,dx4
α≔dx1
L≔β↦α&wedgeβ
L≔β↦DifferentialGeometry:−&wedge⁡α,β
DGNullSpace⁡L,A
dx1
DGImageSpace⁡L,A
dx1⁢⋀⁢dx2,dx1⁢⋀⁢dx3,dx1⁢⋀⁢dx4
Example 2.
Let V be a 3-dimensional space, let 𝒜 be the vector space of covariant rank 2 tensors on V. We define L to be the symmetrization operation, that is, for T ∈ 𝒜, define LTX, Y = 1/2 TX,Y + TY,X. We find the null space and image space for L.
DGsetup⁡x1,x2,x3,V
L≔T↦SymmetrizeIndices⁡T,1,2,Symmetric
L≔T↦Tensor:−SymmetrizeIndices⁡T,1,2,Symmetric
A≔GenerateTensors⁡dx1,dx2,dx3,dx1,dx2,dx3
A≔dx1⁢dx1,dx1⁢dx2,dx1⁢dx3,dx2⁢dx1,dx2⁢dx2,dx2⁢dx3,dx3⁢dx1,dx3⁢dx2,dx3⁢dx3
The null space of L is the space of skew-symmetric tensors,
dx1⁢dx2−dx2⁢dx1,dx1⁢dx3−dx3⁢dx1,dx2⁢dx3−dx3⁢dx2
and the image space is the space of symmetric tensors.
dx1⁢dx1,dx12⁢dx2+dx22⁢dx1,dx12⁢dx3+dx32⁢dx1,dx2⁢dx2,dx22⁢dx3+dx32⁢dx2,dx3⁢dx3
See Also
DifferentialGeometry
Annihilator
ComplementaryBasis
DGbasis
DGsolve
IntersectSubspaces
Download Help Document