GroupActions[InfinitesimalPseudoGroupNormalizer] - find the normalizer of a finite dimensional Lie algebra of vector fields in an (infinite-dimensional) pseudo-Lie algebra of vector fields
Calling Sequences
InfinitesimalPseudoGroupNormalizer(Gamma, options)
Parameters
Gamma - a list, a basis for a Lie algebra Γ of vector fields on a manifold M
options - (optional) arguments that can be given in any order and are described as follows
ansatz - ansatz= Z, where Z is a vector field on M
unknowns - unknowns = U, where U is a list of the unknown functions appearing in the vector field Z
auxiliaryequations - auxiliaryequations = E, where E is a list of additional partial differential equations to be imposed on the unknowns functions U
parameters - parameters = P, where P is a set of parameters appearing in the vector fields Γ
liealgebra - liealgebra = name, where name is the string or name for the abstract Lie algebra defined by Γ
output - output = "general", "pde" or "list"
other options - optional arguments to be passed to pdsolve
Description
Examples
Let Γ= X1, X2 , ... Xp be a p -dimensional Lie algebra of vector fields, defined on a manifold M. Let 𝒢 be an infinite dimensional Lie algebra of vector fields on M, whose general element depends upon a certain number of arbitrary functions and suppose Γ ⊂ 𝒢. Then the normalizer of Γ in 𝒢 is
NorΓ, 𝒢 = { Z ∈ 𝒢 | Z,X ∈ Γ for all X ∈Γ} = { Z ∈ 𝒢 | Z,Xi = ai j Xj for i= 1,... , p and where the coefficients aij are constant}.
The vector fields Xi always belong to Nor(Γ, 𝒢). The procedure InfinitesimalPseudoGroupNormalizer uses the pdsolve command to calculate Nor( Γ, 𝒢),modulo the vector fields in Γ but including vector fields in the center of Γ.
With the calling sequence InfinitesimalPseudoGroupNormalizer(Gamma), the normalizer of Γ in the full infinitesimal pseudo-group of all vector fields on M is computed. With output = "general" (the default value), a single vector field, depending upon arbitrary constants and functions, is returned. If the output depends only on constants (that is, Nor( Γ, 𝒢) is a finite-dimensional algebra) and output = "list", then a list of vectors is returned. In this case the vector fields in the center of Γ are removed. With output = "pde", the determining differential equations for the normalizer are returned.
With the keyword argument ansatz = Z, the procedure InfinitesimalPseudoGroupNormalizer calculates Nor( Γ, 𝒢), where 𝒢 is the infinitesimal pseudo-group defined by the vector field Z. With this keyword option, the unknown functions in Z must be explicitly listed using the keyword argument unknowns = U. Additional algebraic and differential constraints on the unknown functions in Z may be specified with the keyword argument auxiliaryequations = E. Note that the full system of differential equations for Z is likely to be inconsistent if the vector fields in Γ do not satisfy the differential constraints defined by E.
If the abstract Lie algebra determined by Γ has been calculated and initialized (see LieAlgebraData, DGsetup), then this information can be passed to InfinitesimalPseudoGroupNormalizer with the keyword argument liealgebra = name.
The keyword argument parameters = P will invoke the case-splitting capabilities of pdsolve . In this case, the output of InfinitesimalPseudoGroupNormalizer will be a sequence of normalizers for both the generic and special values of the parameters.
The command InfinitesimalPseudoGroupNormalizer is part of the DifferentialGeometry:-GroupActions package. It can be used in the form InfinitesimalPseudoGroupNormalizer(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-InfinitesimalPseudoGroupNormalizer(...).
with⁡DifferentialGeometry:with⁡GroupActions:with⁡LieAlgebras:with⁡Library:
Example 1.
First define a 1-dimensional manifold M with coordinate x.
DGsetup⁡x,M:
On M, define 1 and 2-dimensional Lie algebras of vector fields Γ1 1, Γ1 2 , respectively.
Γ11≔evalDG⁡D_x
Γ11:=D_x
Γ12≔evalDG⁡D_x,x⁢D_x
Γ12:=D_x,x⁢D_x
Find the normalizer of these two Lie algebras in the Lie algebras of all vector fields on M.
N11≔InfinitesimalPseudoGroupNormalizer⁡Γ11
N11:=_C1⁢x+_C2⁢D_x
N11list≔InfinitesimalPseudoGroupNormalizer⁡Γ11,output=list
N11list:=x⁢D_x
N12≔InfinitesimalPseudoGroupNormalizer⁡Γ12
N12:=
Example 2.
Find the normalizer for the Lie algebra of infinitesimal rotations in 3 dimensions.
DGsetup⁡x,y,z,N
frame name: N
Γ2≔evalDG⁡z⁢D_y−y⁢D_z,x⁢D_y−y⁢D_x,z⁢D_x−x⁢D_z
Γ2:=D_y⁢z−D_z⁢y,−D_x⁢y+D_y⁢x,D_x⁢z−D_z⁢x
N2≔InfinitesimalPseudoGroupNormalizer⁡Γ2
N2:=x⁢_F1⁡x2+y2+z2⁢−z2⁢D_xz+y⁢_F1⁡x2+y2+z2⁢−z2⁢D_yz+_F1⁡x2+y2+z2⁢−z2⁢D_z
Now let us find the normalizer for the Lie algebra of infinitesimal rotations in three dimensions within the infinite-dimensional Lie algebra of divergence-free vector fields.
First define a general vector field on N with arbitrary coefficients Ax, y, z, Bx, y, z and Cx, y, z.
U≔A,B,C⁡x,y,z
U:=A⁡x,y,z,B⁡x,y,z,C⁡x,y,z
Z≔evalDG⁡U1⁢D_x+U2⁢D_y+U3⁢D_z
Z:=A⁡x,y,z⁢D_x+B⁡x,y,z⁢D_y+C⁡x,y,z⁢D_z
We use the keyword argument auxiliaryequations to require that the vector field Z be divergence-free.
E≔diff⁡A⁡x,y,z,x+diff⁡B⁡x,y,z,y+diff⁡C⁡x,y,z,z=0:
N2div≔InfinitesimalPseudoGroupNormalizer⁡Γ2,ansatz=Z,unknowns=U,auxiliaryequations=E
N2div:=x⁢_C1⁢D_xx2+y2+z23/2+y⁢_C1⁢D_yx2+y2+z23/2+_C1⁢z⁢D_zx2+y2+z23/2
Example 3.
In this example we shall calculate the normalizers for a Lie algebra of vector fields which depends upon a parameter α. We find that Nor(Γ3) mod Γ3 has dimension 2 for α ≠0 and dimension 3 for α = 0.
Γ3≔evalDG⁡D_x,D_y,D_z,x+z⁢D_x+α⁢y⁢D_y+z⁢D_z
Γ3:=D_x,D_y,D_z,x+z⁢D_x+α⁢y⁢D_y+z⁢D_z
N3≔InfinitesimalPseudoGroupNormalizer⁡Γ3,parameters=α,output=list
N3:=z⁢D_x,D_x⁢x+D_z⁢z,D_y,z⁢D_x,D_x⁢x+D_z⁢z,α=0,α=α
Example 4.
We calculate the normalizer of the infinitesimal Euclidean group in the infinitesimal pseudo-group of all contact transformation on a 3- dimensional contact manifold M with coordinates x,y,z with contact form ω = dy − z dx.
DGsetup⁡x,y,z,M
frame name: M
Here is the standard Euclidean metric on the x,y plane and the standard contact form on M.
g≔evalDG⁡dx&tdx+dy&tdy
g:=dx⁢dx+dy⁢dy
ω≔evalDG⁡dy−z⁢dx
ω:=−dx⁢z+dy
We use the command InfinitesimalSymmetriesOfGeometricObjectFields to find the Lie algebra of vector fields which preserves the metric g and the Pfaffian system generated by ω.
Γ4≔InfinitesimalSymmetriesOfGeometricObjectFields⁡g,ω,output=list
Γ4:=−y⁢D_x+x⁢D_y+z2+1⁢D_z,D_y,D_x
We define an arbitrary vector field Z on M and again use the command InfinitesimalSymmetriesOfGeometricObjectFields, this time to find the partial differential equations which the coefficients of Z must satisfy in order that this vector field be an infinitesimal contact transformation.
Z≔evalDG⁡A1⁡x,y,z⁢D_x+A2⁡x,y,z⁢D_y+A3⁡x,y,z⁢D_z
Z:=A1⁡x,y,z⁢D_x+A2⁡x,y,z⁢D_y+A3⁡x,y,z⁢D_z
E≔InfinitesimalSymmetriesOfGeometricObjectFields⁡ω,ansatz=Z,unknowns=A1,A2,A3⁡x,y,z,output=pde
E:=z⁢_K111⁡x,y,z+∂∂x⁢A2⁡x,y,z−∂∂x⁢A1⁡x,y,z⁢z−A3⁡x,y,z,−_K111⁡x,y,z+∂∂y⁢A2⁡x,y,z−∂∂y⁢A1⁡x,y,z⁢z,∂∂z⁢A2⁡x,y,z−∂∂z⁢A1⁡x,y,z⁢z,0,A1⁡x,y,z,A2⁡x,y,z,A3⁡x,y,z,_K111⁡x,y,z
Note that the factor K111x,y,z is an additional unknown satisfying ℒZω = K111 ω. The sought after normalizer of Γ4 in the infinitesimal pseudo-group of contact transformations can now be computed.
Nor4≔InfinitesimalPseudoGroupNormalizer⁡Γ4,ansatz=Z,unknowns=E2,auxiliaryequations=E1,output=list
Nor4:=D_x⁢x+D_y⁢y,−z⁢D_xz2+1+D_yz2+1
We can check this result by noting that [i] the vector fields Nor4 preserve ω and [ii] the normalizer is a 5-dimensional Lie algebra which contains Γ4 as an ideal.
LieDerivative⁡Nor4,ω
−dx⁢z+dy,0⁢dx
LD≔LieAlgebraData⁡op⁡Γ4,op⁡Nor4,alg
LD:=e1,e2=e3,e1,e3=−e2,e2,e4=e2,e3,e4=e3,e4,e5=−e5
DGsetup⁡LD
Lie algebra: alg
Query⁡e1,e2,e3,Ideal
true
See Also
DifferentialGeometry
GroupActions
InfinitesimalSymmetriesOfGeometricObjectFields
LieAlgebraData
Query
Download Help Document