JetCalculus[EvolutionaryVector] - form the evolutionary part of a vector field
Calling Sequences
EvolutionaryVector(X)
Parameters
X - a vector field or a generalized vector field on a fiber bundle
Description
Examples
Let π:E → M be a fiber bundle and let πk:JkE →M be the associated jet bundle. Let (xi, uα, uiα, uijα, ...,uij ⋅⋅⋅ mα) be the local coordinates on JkE and let X = Aj∂ ∂xi +Bβ∂ ∂uβ (*) be a generalized vector field on E. The coefficients Ai and Bβ are functions on jet space. Then the evolutionary part of X is the generalized vertical vector field Xev = Bβ −Aℓuℓβ∂ ∂uβ. Every vector field decomposes as a sum of its evolutionary and total parts X = Xtot + Xev .
The evolutionary part of a projectable vector field X has the following geometric interpretation (The vector (*) is projectable if Ai=Aixj and Bβ = Bβ(xi, uα)). Let φt:E → E be the flow of X. Then φt covers a map ψt:M→M. If σ:M→E is a section of E, then the induced flow in the space of sections is defined by the section σtx=φtσψ−tx. The derivative of σt, evaluated at t = 0, yields Xev .
The command EvolutionaryVector is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form EvolutionaryVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-EvolutionaryVector(...).
with⁡DifferentialGeometry:with⁡JetCalculus:
Example 1.
Create the 1st order jet space of 2 independent variables x,y and 2 dependent variables u, v.
DGsetup⁡x,y,u,v,J22,1:
Define a vector X1 and compute its total and evolutionary parts totX1and evolX1. Check that X1 = totX1+evolX1.
X1≔D_x
totX1≔TotalVector⁡X1
totX1≔D_x+u1⁢D_u+v1⁢D_v
evolX1≔EvolutionaryVector⁡X1
evolX1≔−u1⁢D_u−v1⁢D_v
totX1&plusevolX1
D_x
Define a vector X2 and compute its total and evolutionary parts totX2 and evolX2. Check that X2 = totX2+evolX2.
X2≔D_u
totX2≔TotalVector⁡X2
totX2≔0⁢D_x
evolX2≔EvolutionaryVector⁡X2
evolX2≔D_u
totX2&plusevolX2
D_u
Define a vector X3 and compute its total and evolutionary parts totX3 and evolX3. Check that X3 = totX3+ evolX3.
X3≔evalDG⁡a⁢D_x+b⁢D_y+c⁢D_u+d⁢D_v
X3≔a⁢D_x+b⁢D_y+c⁢D_u+d⁢D_v
totX3≔TotalVector⁡X3
totX3≔a⁢D_x+b⁢D_y+u1⁢a+u2⁢b⁢D_u+v1⁢a+v2⁢b⁢D_v
evolX3≔EvolutionaryVector⁡X3
evolX3≔−u1⁢a+u2⁢b−c⁢D_u−v1⁢a+v2⁢b−d⁢D_v
totX3&plusevolX3
a⁢D_x+b⁢D_y+c⁢D_u+d⁢D_v
Example 2.
In this example we illustrate the geometric interpretation of the evolutionary part of a projectable vector field. First define a 3-dimensional bundle E over a two dimensional base. Define the base space M separately.
DGsetup⁡x,y,M:DGsetup⁡x,y,u,E,2:
Define a vector field X4 and compute its evolutionary part evolX4. Define the projection Y4 of the vector field X4 onto the base manifold M.
X4≔evalDG⁡−y⁢D_x+x⁢D_y+u⁢D_u
X4≔−y⁢D_x+x⁢D_y+u⁢D_u
evolX4≔EvolutionaryVector⁡X4
evolX4≔−u2⁢x−u1⁢y−u⁢D_u
ChangeFrame⁡M
E
Y4≔evalDG⁡−y⁢D_x+x⁢D_y
Y4≔−y⁢D_x+x⁢D_y
Calculate the flow ψ−t of Y4 and the flow φt of X4.
ψ≔eval⁡Flow⁡Y4,t,t=−t
ψ≔x=y⁢sin⁡t+x⁢cos⁡t,y=y⁢cos⁡t−x⁢sin⁡t
Φ≔Flow⁡X4,t
Φ≔x=−y⁢sin⁡t+x⁢cos⁡t,y=y⁢cos⁡t+x⁢sin⁡t,u=u⁢ⅇt
Define a section σ of E sending x,y → Ux,y.
σ≔Transformation⁡M,E,x=x,y=y,u=U⁡x,y
σ≔x=x,y=y,u=U⁡x,y
Calculate the induced flow on the space of sections.
sigma_t≔ComposeTransformations⁡Φ,σ,ψ
sigma_t≔x=−y⁢cos⁡t−x⁢sin⁡t⁢sin⁡t+y⁢sin⁡t+x⁢cos⁡t⁢cos⁡t,y=y⁢cos⁡t−x⁢sin⁡t⁢cos⁡t+y⁢sin⁡t+x⁢cos⁡t⁢sin⁡t,u=U⁡y⁢sin⁡t+x⁢cos⁡t,y⁢cos⁡t−x⁢sin⁡t⁢ⅇt
Σ≔ApplyTransformation⁡sigma_t,x,y
Σ≔−y⁢cos⁡t−x⁢sin⁡t⁢sin⁡t+y⁢sin⁡t+x⁢cos⁡t⁢cos⁡t,y⁢cos⁡t−x⁢sin⁡t⁢cos⁡t+y⁢sin⁡t+x⁢cos⁡t⁢sin⁡t,U⁡y⁢sin⁡t+x⁢cos⁡t,y⁢cos⁡t−x⁢sin⁡t⁢ⅇt
eval⁡diff⁡Σ,t,t=0
0,0,D1⁡U⁡x,y⁢y−D2⁡U⁡x,y⁢x+U⁡x,y
Compare with the components of evolX4.
GetComponents⁡evolX4,D_x,D_y,D_u
0,0,−x⁢u2+y⁢u1+u
See Also
DifferentialGeometry
JetCalculus
ApplyTransformation
ComposeTransformations
GetComponents
Prolong
TotalVector
Transformation
Download Help Document