JetCalculus[GeneralizedLieBracket] - find the Lie bracket of two generalized vector fields
Calling Sequences
GeneralizedLieBracket(X, Y)
Parameters
X,Y - generalized vector fields on a fiber bundle
Description
Examples
Let π : E→M be a fiber bundle and let πk: JkE→M be the k-th jet bundle of E. Let X be a generalized vector field of order k and let Y be a generalized vector field of order ℓ. Then the generalized Lie bracket X, Ygen is the generalized vector field calculated by applying the ℓ-th prolongation of the vector X to (the coefficients of) Y and subtracting the k-th prolongation of the vector Y applied to (the coefficients of) X, that is, X, Ygen = prℓXY − prkYX.
The command GeneralizedLieBracket(X, Y) returns the generalized vector field X, Ygen.
For applications to the generalized symmetries of integrable evolution equations such as the KdV equation, see the tutorial titled Recursion Operators For Integrable Evolution Equations.
The command GeneralizedLieBracket is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form GeneralizedLieBracket(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-GeneralizedLieBracket(...).
with⁡DifferentialGeometry:with⁡JetCalculus:
Example 1.
First initialize the jet space for 2 independent variables x, y and 1 dependent variable u and prolong it to order 4.
DGsetup⁡x,y,u,E1,4:
Define 2 vector fields X1 and Y1.
X1≔u1,2,2,22&multD_u
X1≔u1,2,2,22⁢D_u
Y1≔u2,2&multD_u
Y1≔u2,2⁢D_u
Compute the generalized Lie bracket X1, Y1gen.
Z1≔GeneralizedLieBracket⁡X1,Y1
Z1≔2⁢u1,2,2,2,22⁢D_u
We show how this result is obtained. First prolong X1 to the order of the coefficient in Y1 namely 2. Apply the prolonged vector field to the coefficient of X1
prX1≔Prolong⁡X1,2
prX1≔u1,2,2,22⁢D_u+2⁢u1,2,2,2⁢u1,1,2,2,2⁢D_u1+2⁢u1,2,2,2⁢u1,2,2,2,2⁢D_u2+2⁢u1,2,2,2⁢u1,1,1,2,2,2+2⁢u1,1,2,2,22⁢D_u1,1+2⁢u1,2,2,2⁢u1,1,2,2,2,2+2⁢u1,2,2,2,2⁢u1,1,2,2,2⁢D_u1,2+2⁢u1,2,2,2⁢u1,2,2,2,2,2+2⁢u1,2,2,2,22⁢D_u2,2
term1≔LieDerivative⁡prX1,u2,2
term1≔2⁢u1,2,2,2⁢u1,2,2,2,2,2+2⁢u1,2,2,2,22
Next prolong Y1 to the order of the coefficient in X1 (namely 4). Apply the prolonged vector field to the coefficient of Y1.
prY1≔Prolong⁡Y1,4
prY1≔u2,2⁢D_u+u1,2,2⁢D_u1+u2,2,2⁢D_u2+u1,1,2,2⁢D_u1,1+u1,2,2,2⁢D_u1,2+u2,2,2,2⁢D_u2,2+u1,1,1,2,2⁢D_u1,1,1+u1,1,2,2,2⁢D_u1,1,2+u1,2,2,2,2⁢D_u1,2,2+u2,2,2,2,2⁢D_u2,2,2+u1,1,1,1,2,2⁢D_u1,1,1,1+u1,1,1,2,2,2⁢D_u1,1,1,2+u1,1,2,2,2,2⁢D_u1,1,2,2+u1,2,2,2,2,2⁢D_u1,2,2,2+u2,2,2,2,2,2⁢D_u2,2,2,2
term2≔LieDerivative⁡prY1,u1,2,2,22
term2≔2⁢u1,2,2,2⁢u1,2,2,2,2,2
The difference between term1 and term2 gives the coefficient of the generalized Lie bracket X1, Y1gen.
term1−term2
2⁢u1,2,2,2,22
Example 2.
The generalized Lie bracket is not restricted to evolutionary (vertical) generalized vector fields.
X2≔evalDG⁡u2⁢x⁢D_x+u12⁢D_u
X2≔u2⁢x⁢D_x+u12⁢D_u
Y2≔evalDG⁡u1,2⁢D_x+y⁢D_u
Y2≔u1,2⁢D_x+y⁢D_u
GeneralizedLieBracket⁡X2,Y2
−x⁢u1,1⁢u2,2+x⁢u1,22+u1⁢u2,2−2⁢u1,1,2⁢u1+2⁢u1,2⁢u2−2⁢u1,1⁢u1,2+x⁢D_x+2⁢u1,1,2⁢u12⁢D_u
Example 3.
The generalized Lie bracket for a pair of 1st order evolutionary vector fields coincides with the Jacobi bracket. For example:
vars≔x,y,u1,u2:
PDEtoolsdeclare⁡F⁡vars,G⁡vars,quiet
X3≔F⁡vars&multD_u
X3≔F⁢D_u
Y3≔G⁡vars&multD_u
Y3≔G⁢D_u
GeneralizedLieBracket⁡X3,Y3
Gu1⁢Fx+Gu2⁢Fy−Gx⁢Fu1−Gy⁢Fu2⁢D_u
See Also
DifferentialGeometry
JetCalculus
AssignVectorType
LieBracket
LieDerivative
Prolong
Download Help Document