JetCalculus[HorizontalExteriorDerivative] - calculate the horizontal exterior derivative of a bi-form on a jet space
Calling Sequences
HorizontalExteriorDerivative(ω)
Parameters
omega - a differential bi-form on the jet space of a fiber bundle
Description
Examples
Let π:E→M be a fiber bundle, with base dimension n and fiber dimension m and let π∞:J∞E → M be the infinite jet bundle of E. Let (xi, uα, uiα, uijα, ..., uij ⋅⋅⋅ kα, ....) be a local system of jet coordinates. Every differential form on J∞E can be expressed locally in terms of a sum of wedge products of 1-forms dxi on M and contact 1-forms,
Θα = duα−uℓαdxℓ, Θiα = duiα−uiℓαdxℓ , .... , Θij⋅⋅⋅kα = duij⋅⋅⋅kα−uij⋅⋅⋅kℓα dxℓ , .... .
Note that exterior derivatives of the contact 1-forms are
dΘα = dxℓ ∧ Θℓ α, dΘiα = dxℓ ∧ Θiℓ α, .... , dΘij⋅⋅⋅kα = dxℓ ∧ Θij⋅⋅⋅kℓ α.
A differential p−form ω ∈ ΩpJ∞ is called a bi-form of degree r,s if it is a sum of wedge products of r 1-forms on M and s contact 1-forms, that is,
ω = Ai1i2⋅⋅⋅ir a1 ⋅⋅⋅as dxi1∧dxi2 ∧ ⋅⋅⋅ ∧dxir ∧ Ca1∧Ca2 ⋅⋅⋅ ∧Cas, where each Cak is a contact 1-form.
The space of all p-forms then decomposes as a direct sum of bi-forms
ΩpJ∞ = ⨁r+s =p Ωr,sJ∞E
The above formulas for the exterior derivative of the contact forms shows that d:Ωr,sJ∞E→ Ωr+1,sJ∞E ⊕Ωr,s+1J∞Eand therefore d = dH + dV, where
dH :Ωr,sJ∞E→ Ωr+1,sJ∞E and dV :Ωr,sJ∞E→ Ωr,s+1J∞E.
The differential operator dH is called the horizontal exterior derivative and the differential operator dV is called the vertical exterior derivative. One has that
dH∘dH =0, dH∘dV + dV∘dH =0, and dV∘dV =0.
The coordinate formulas for the horizontal exterior derivative are
dHxi = dxi , dHuij ⋅⋅⋅ kα = uij ⋅⋅⋅ kℓα dxℓ, dHdxi = 0, dHΘij⋅⋅⋅kα = dxℓ ∧ Θij⋅⋅⋅kℓα.
The coordinate formulas for the vertical exterior derivative are
dVxi =0, dVuij ⋅⋅⋅ kα = Θij ⋅⋅⋅ kα , dVdxi = 0, dVΘij⋅⋅⋅kα = 0.
The command HorizontalExteriorDerivative(ω) returns the horizontal exterior derivative dHω. The horizontal degree of ω must be less than the dimension of the base manifold M. The vertical exterior derivative is computed with the command VerticalExteriorDerivative.
The command HorizontalExteriorDerivative is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form HorizontalExteriorDerivative(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-HorizontalExteriorDerivative(...).
with⁡DifferentialGeometry:with⁡JetCalculus:
Example 1.
Create the jet space J2E for the bundle E with coordinates x, y, u, v → x, y.
DGsetup⁡x,y,u,v,E,2:
Calculate the horizontal exterior derivative of a function.
F≔f⁡x,y,u,u1,u2:
PDEtoolsdeclare⁡F,quiet:
HorizontalExteriorDerivative⁡F
fu⁢u1+fu1⁢u1,1+fu2⁢u1,2+fx⁢Dx+fu⁢u2+fu1⁢u1,2+fu2⁢u2,2+fy⁢Dy
Calculate the horizontal exterior derivative of a type (1, 0) bi-form.
ω1≔A⁡x,y,u,u1,u2⁢Dx+B⁡x,y,u,u1,u2⁢Dy
ω1:=A⁡x,y,u[],u1,u2⁢Dx+B⁡x,y,u[],u1,u2⁢Dy
HorizontalExteriorDerivative⁡ω1
−Au⁢u2+Au1⁢u1,2+Au2⁢u2,2−Bu⁢u1−Bu1⁢u1,1−Bu2⁢u1,2+Ay−Bx⁢Dx⁢⋀⁢Dy
Calculate the horizontal exterior derivative of a type (0, 2) bi-form.
ω2≔Cu2&wedgeCv2
ω2:=Cu2⁢⋀⁢Cv2
HorizontalExteriorDerivative⁡ω2
Dx⁢⋀⁢Cu2⁢⋀⁢Cv1,2−Dx⁢⋀⁢Cv2⁢⋀⁢Cu1,2+Dy⁢⋀⁢Cu2⁢⋀⁢Cv2,2−Dy⁢⋀⁢Cv2⁢⋀⁢Cu2,2
See Also
DifferentialGeometry
JetCalculus
ExteriorDerivative
VerticalExteriorDerivative
HorizontalHomotopy
VerticalHomotopy
Download Help Document