JetCalculus[TotalJacobian] - find the Jacobian of a transformation using total derivatives
Calling Sequences
TotalJacobian(φ)
Parameters
φ - a transformation between two jet spaces
Description
Examples
Let E→M and F→N be two fiber bundles with associated jet spaces JkE →M and JℓF →N and with jet coordinates (xi, uα, uiα, uijα, ..., uij ⋅⋅⋅ kα) and (ya, vρ, viρ, vij ρ, ..., vij ⋅⋅⋅ ℓρ) respectively. Let φ:JkE →JℓF be a transformation and let φa= φa(xi, uα, uiα, uijα, ..., uij ⋅⋅⋅ kα) be the ya components of φ . Then the total Jacobian of φ is the m ×n matrix Diφa, where Di denotes the total derivative with respect to xi.
TotalJacobian returns the m ×n matrix Diφa.
The command TotalJacobian is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form TotalJacobian(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-TotalJacobian(...).
with⁡DifferentialGeometry:with⁡JetCalculus:
Example 1.
First initialize several different jet spaces over bundles E1→M1, E2→M2, E3→M3. The dimension of the base spaces are dimM1 =2, dimM2 =1, dimM3 =3.
DGsetup⁡x,y,u,E1,2:DGsetup⁡t,v,E2,2:DGsetup⁡p,q,r,w,E3,2:
Define a transformation φ1:J2E1 → E2 and compute its total Jacobian (a 1 ×2 matrix).
φ1≔Transformation⁡E1,E2,t=u1,1,v=x⁢y
φ1≔t=u1,1,v=x⁢y
J1≔TotalJacobian⁡φ1
J1≔u1,1,1u1,1,2
Define a transformation φ2:J2E1 → E3 and compute its total Jacobian (a 3×2 matrix).
φ2≔Transformation⁡E1,E3,p=x⁢u1,q=y⁢u,r=u2,2,w=u1
φ2≔p=x⁢u1,q=y⁢u,r=u2,2,w=u1
J2≔TotalJacobian⁡φ2
J2≔x⁢u1,1+u1x⁢u1,2y⁢u1y⁢u2+uu1,2,2u2,2,2
Define a transformation φ3:J1E1 → E1 and compute its total Jacobian (a 2×2 matrix).
φ3≔Transformation⁡E1,E1,x=x⁢y,y=u⁢u2,u=y
φ3≔x=x⁢y,y=u⁢u2,u=y
J3≔TotalJacobian⁡φ3
J3≔yxu⁢u1,2+u2⁢u1u⁢u2,2+u22
See Also
DifferentialGeometry
JetCalculus
PushforwardTotalVector
TotalDiff
Transformation
Download Help Document