JetCalculus[ZigZag] - lift a dH-closed form on a jet space to a d-closed form
Calling Sequences
ZigZag(ω)
Parameters
ω - a differential bi-form on the jet space of a fiber bundle
Description
Examples
Let π:E→M be a fiber bundle, with base dimension n and fiber dimension m and let π∞:J∞E → M be the infinite jet bundle of E. The space of p-forms on J∞E decomposes as a direct sum of bi-forms
ΩpJ∞ = ⨁r+s =p Ωr,sJ∞E.
Let ω ∈ Ωr,sJ∞E be a bi-form of degree r,s. I f r <n , suppose that dH ω=0 or, if r= n, that IdV ω = 0. See HorizontalExteriorDerivative, VerticalExteriorDerivative, and IntegrationByParts for the definitions of the space Ωr,sJ∞E, the horizontal exterior derivative dH, the vertical exterior derivative dV, and the integration by parts operator I.
Given that dH ω=0 or IdV ω = 0, define a degree p=r+s form θ ∈ ΩpJ∞ by
θ = θ0 − θ1 +θ2−⋅⋅⋅ +θr where θ0 = ω and dVθi=dHθi+1.
The forms θi are of bi-degree r−i, s+i. The forms θi can be calculated inductively using the horizontal homotopy operators θi+1= hHr−i, s+i+1dVθi. The fundamental property of this construction is that the form θ is always closed with respect to the standard exterior derivative, that is, dθ = 0.
If ω is a bi-form of degree r,s,then ZigZag(ω) returns the differential form θ of degree r+s.
The command ZigZag is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form ZigZag(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-ZigZag(...).
with(DifferentialGeometry): with(JetCalculus):
Example 1.
Create the jet space J3Efor the bundle E= ℝ2 ×ℝ with coordinates x,y,u→x,y.
DGsetup([x, y], [u], E, 3):
Define a type (1, 0) form ω1 and show that it is dH -closed.
omega1 := evalDG((u[1, 2]*u[1, 1, 1] + u[1 ,1]*u[1, 1, 2])*Dx + (u[1, 2]*u[1 ,1, 2] + u[1, 1]*u[1, 2, 2])*Dy);
ω1≔u1,1⁢u1,1,2+u1,2⁢u1,1,1⁢Dx+u1,1⁢u1,2,2+u1,2⁢u1,1,2⁢Dy
HorizontalExteriorDerivative(omega1);
0⁢Dx⁢⋀⁢Dy
Apply the ZigZag command to ω1 to obtain a form θ1.
theta1 := ZigZag(omega1);
θ1≔u1,2⁢du1,1+u1,1⁢du1,2
Check that θ1 is d-closed and that its [1, 0] component matches ω1.
ExteriorDerivative(theta1);
0⁢dx⁢⋀⁢dy
convert(theta1, DGbiform, [1, 0]);
u1,1⁢u1,1,2+u1,2⁢u1,1,1⁢Dx+u1,1⁢u1,2,2+u1,2⁢u1,1,2⁢Dy
Example 2.
Define a type (2, 0) form ω2 and show that its Euler-Lagrange form is 0.
omega2 := evalDG((- u[2, 2]*u[1, 2] - u[2]*u[1, 2, 2] - u[1]*u[1, 2, 2] - u[1, 2]^2)*Dx &w Dy);
ω2≔−u1⁢u1,2,2+u2⁢u1,2,2+u1,22+u2,2⁢u1,2⁢Dx⁢⋀⁢Dy
EulerLagrange(omega2);
0⁢Dx⁢⋀⁢Dy⁢⋀⁢Cu
Apply the ZigZag command to ω2 to obtain a 2-form θ2.
theta2 := ZigZag(omega2);
θ2≔−u1,23+u2,26⁢dx⁢⋀⁢du1−2⁢u1,23⁢dx⁢⋀⁢du2−u13+2⁢u23⁢dx⁢⋀⁢du1,2−u16⁢dx⁢⋀⁢du2,2+u2,23⁢dy⁢⋀⁢du1+u1,23+u2,26⁢dy⁢⋀⁢du2+u23⁢dy⁢⋀⁢du1,2+u26+u13⁢dy⁢⋀⁢du2,2−13⁢du⁢⋀⁢du1,2+16⁢du⁢⋀⁢du2,2+13⁢du1⁢⋀⁢du2
Check that θ2 is d−closed and that its [2, 0] component matches ω2.
ExteriorDerivative(theta2);
0⁢dx⁢⋀⁢dy⁢⋀⁢du
convert(theta2, DGbiform, [2, 0]);
−u1⁢u1,2,2+u2⁢u1,2,2+u1,22+u2,2⁢u1,2⁢Dx⁢⋀⁢Dy
Example 3.
Define a type (2, 1) form ω3 and show that IdVω3 =0.
omega3 := EulerLagrange(u[1]*u[2]^2*Dx &w Dy);
ω3≔−2⁢u1⁢u2,2+4⁢u2⁢u1,2⁢Dx⁢⋀⁢Dy⁢⋀⁢Cu
IntegrationByParts(VerticalExteriorDerivative(omega3));
0⁢Dx⁢⋀⁢Dy⁢⋀⁢Cu⁢⋀⁢Cu1
Apply the ZigZag command to ω3 to obtain a form θ3.
theta3 := ZigZag(omega3);
θ3≔−2⁢u22⁢dx⁢⋀⁢dy⁢⋀⁢du1−4⁢u1⁢u2⁢dx⁢⋀⁢dy⁢⋀⁢du2+2⁢u2⁢dx⁢⋀⁢du⁢⋀⁢du1+2⁢u1⁢dx⁢⋀⁢du⁢⋀⁢du2−2⁢u2⁢dy⁢⋀⁢du⁢⋀⁢du2
Check that θ3 is d−closed and that its [2, 1] component matches ω3.
ExteriorDerivative(theta3);
0⁢dx⁢⋀⁢dy⁢⋀⁢du⁢⋀⁢du1
convert(theta3, DGbiform, [2, 1]);
−2⁢u1⁢u2,2+4⁢u2⁢u1,2⁢Dx⁢⋀⁢Dy⁢⋀⁢Cu
See Also
DifferentialGeometry
JetCalculus
DeRhamHomotopy
EulerLagrange
ExteriorDerivative
HorizontalExteriorDerivative
HorizontalHomotopy
IntegrationByParts
VerticalExteriorDerivative
VerticalHomotopy
Download Help Document