Details for Cartan matrices and Dynkin diagrams
Description
Code
Root Type A
Root Type B
Root Type C
Root Type D
Exceptional Root Types
This document contains a list of all Cartan matrices and Dynkin diagrams for all classical root types of rank≤ 6 and for all exceptional root types.
Let Δ0 = α1, α2, ... , αm be a set of simple roots and let (⋅,⋅) be the inner product on the roots induced by the Killing form. The Cartan matrix is given by Cij = 2 αi ,αj αj , αj.
From the Cartan matrix one can calculate the number of lines connecting αi to αj as Eij = Cij Cji (*) . The relative lengths of the root vectors can be found as the ratios αi ,αi αj , αj = Cji Cij (**). Set Li = αi ,αi αi+1 , αi+1.
The edge matrix Eij and the root length vector Li clearly determine the Dynkin diagram. Conversely, the equations (*) and (**), together with the facts that Cii = 2 and −3 ≤Cij ≤ 0 for i≠j uniquely determine the Cartan matrix from the edge matrix Eij and the root length vector Li. For additional details see, for example, W. A. de Graaf, Lie Algebras: Theory and Algorithms, pages 167-168.
with(DifferentialGeometry): with(LieAlgebras):
We give 3 simple programs. The first calculates the edge matrix Eij and the second the relative lengths Li of the roots. The third program re-constructs the Cartan matrix from the edge matrix and the relative length vector.
EdgeMatrix := proc(C) local n;
description `a procedure to find the adjacency matrix for the Dynkin diagram from the Cartan matrix`;
n := LinearAlgebra:-ColumnDimension(C);
Matrix(n, n, (i, j) -> C[i, j]*C[j, i]);
end:
RootLengths := proc(C) local n, Eq, soln;
description `a procedure to find the ratio of the root lengths for the Dynkin diagram from the Cartan matrix`;
Eq := {seq(seq(C[j, i]*x||i/x||j = C[i, j], i = 1 .. n) ,j = 1 .. n)}:
soln := solve(Eq, {seq(x||i , i = 1 .. n)});
eval(Vector([seq(x||i/x||(i+1), i = 1 .. n-1)]), soln)
DynkinDiagramDataToCartanMatrix := proc(Edges, L) local n, C, vars, Eq1, Eq2, Eq3, soln;
description `a procedure to find the Cartan matrix from the Dynkin diagram (edge matrix and root length rations)`;
n := LinearAlgebra:-ColumnDimension(Edges);
C := Matrix(n, n, proc(i, j) if i=j then 2 else c||i||j fi end); vars := indets(C);
Eq1:= {seq(seq( C[i,j]*C[j,i] = Edges[i,j], j = i+1..n), i = 1..n)};
Eq2 := {seq(seq(C[j,i]*mul(L[k], k = i.. j-1) = C[i,j], j = i+1..n) , i = 1..n-1)};
Eq3 := {seq(v<=0 ,v =vars), seq(v >= -3, v=vars)};
soln := solve(Eq1 union Eq2 union Eq3, vars);
eval(C, [soln][1]);
Root Type
Cartan Matrix
CijCji
Ci,i+1Ci+1,i
Dynkin Diagram
A1
2
--
A2
2−1−12
4114
1
A3
2−10−12−10−12
410141014
11
A4
2−100−12−100−12−100−12
4100141001410014
111
A5
2−1000−12−1000−12−1000−12−1000−12
4100014100014100014100014
1111
A6
2−10000−12−10000−12−10000−12−10000−12−10000−12
410000141000014100001410000141000014
11111
Here is the Cartan matrix for A4 and the corresponding edge matric and root length vector
C := CartanMatrix("A", 4);
E := EdgeMatrix(C); L := RootLengths(C);
Re -construct the A4 Cartan matrix.
DynkinDiagramDataToCartanMatrix(E, L);
Root
Type
Cartan Matrix C
B2
2−2−12
0200
B3
2−10−12−20−12
010002000,
12
B4
2−100−12−100−12−200−12
0100001000020000
112
B5
2−1000−12−1000−12−1000−12−2000−12
0100000100000100000200000
1112
B6
2−10000−12−10000−12−10000−12−10000−12−20000−12
010000001000000100000010000002000000,
11112
Here is the Cartan matrix for B4 and the corresponding edge matrix and root length vector.
C := CartanMatrix("B", 4);
Re -construct the B4 Cartan matrix.
C3
2−10−12−10−22
410142024
C4
2−100−12−100−12−100−22
4100141001420024
C5
2−1000−12−1000−12−1000−12−1000−22
4100014100014100014200024,
C6
2−10000−12−10000−12−10000−12−10000−12−10000−22
410000141000014100001410000142000024
111112
Here is the Cartan matrix for C4 and the corresponding edge matrix and root length vector.
C := CartanMatrix("C", 4);
Re -construct the C4 Cartan matrix.
D3
2−1−1−120−102
411140104
D4
2−100−12−1−10−1200−102
4100141101400104,
D5
2−1000−12−1000−12−1−100−12000−102
4100014100014110014000104
D6
2−10000−12−10000−12−10000−12−1−1000−120000−102
Here is the Cartan matrix for D4 and the corresponding edge matrix and root length vector.
C := CartanMatrix("D", 4);
Re -construct the D4 Cartan matrix.
E6
20−1000020−100−102−1000−1−12−10000−12−10000−12
401000040100104100011410000141000014
E7
20−10000020−1000−102−10000−1−12−100000−12−100000−12−100000−12
4010000040100010410000114100000141000001410000014
E8
20−100000020−10000−102−100000−1−12−1000000−12−1000000−12−1000000−12−1000000−12
4010000004010000104100000114100000014100000014100000014100000014
F4
2−100−12−200−12−100−12
4100142002410014
121
G2
2−1−32
4334
13
Here is the Cartan matrix for E6 and the corresponding edge matrix and root length vector.
C := CartanMatrix("E", 6);
Re -construct the E6 Cartan matrix.
See Also
DifferentialGeometry
CartanMatrix
CartanSubalgebra
DynkinDiagram
RootSpaceDecomposition
SimpleRoots
Download Help Document