LieAlgebras[Invariants] - calculate the invariant vectors for a representation of a Lie algebra, calculate the invariant tensors for a tensor product representation of a Lie algebra
Calling Sequences
Invariants(ρ)
Invariants(ρ, T)
Parameters
ρ - a representation ρ of a Lie algebra 𝔤 on a vector space V
T - list of tensors on V defining a subspace of tensors invariant under the induced representation ρ‾
Description
Examples
Let ρ : 𝔤 → glV be a representation of a Lie algebra 𝔤 on a vector space V. A vector Y ∈V is an invariant vector for the representation ρ if ρxY = 0 for all x ∈ 𝔤.
Let W=TsrV be the vector space of type r, s tensors on V. Then the representation ρ : 𝔤 → glV defines an induced representation ρ‾: 𝔤 → glW.
The procedure Invariants(ρ) returns a basis for the vector subspace of invariant vectors for the representation rho. An empty list is returned if the zero vector is the only invariant vector.
The procedure Invariants(ρ, T) returns a basis for the subspace of tensors which belong to T and which are invariant with respect to the representation ρ‾ .
with⁡DifferentialGeometry:with⁡Tensor:with⁡Library:with⁡LieAlgebras:
Example 1.
We define a 6-dimensional representation of sl2and find the invariant vectors.
L≔LieAlgebraData⁡x1,x2=−2⁢x1,x1,x3=x2,x2,x3=−2⁢x3,x1,x2,x3,sl2
L:=e1,e2=−2⁢e1,e1,e3=e2,e2,e3=−2⁢e3
DGsetup⁡L:
DGsetup⁡z1,z2,z3,z4,z5,z6,W1:
M≔Matrix⁡0,0,0,0,0,0,−2,0,0,0,0,0,0,−1,0,0,0,0,0,−3,0,0,0,0,0,0,−3,−1,0,0,0,0,0,0,−2,0,Matrix⁡−4,0,0,0,0,0,0,−2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,4,Matrix⁡0,−2,0,0,0,0,0,0,−3,−1,0,0,0,0,0,0,−1,0,0,0,0,0,−3,0,0,0,0,0,0,−2,0,0,0,0,0,0:
ρ1≔Representation⁡sl2,W1,M
Inv≔Invariants⁡ρ1
Inv:=−13⁢D_z3+D_z4
We check this result using the ApplyRepresentation command.
map2⁡ApplyRepresentation,ρ1,e1,e2,e3,Inv1
0⁢D_z1,0⁢D_z1,0⁢D_z1
Example 2.
In this example we calculate the invariant (1,1) tensors, the invariant (0,2) symmetric tensors and the type (1,2) invariant tensors for the adjoint representation of the Lie algebra [3,2] in the Winternitz tables of Lie algebras. We begin by using the Retrieve command to obtain the structure equations for this Lie algebra.
L≔Retrieve⁡Winternitz,1,3,2,Alg1
L:=e1,e3=e1,e2,e3=e1+e2
DGsetup⁡x,y,z,V:
ρ2≔Representation⁡Alg1,V,Adjoint⁡Alg1
There are no vector invariants.
F≔D_x,D_y,D_z
F:=D_x,D_y,D_z
Invariants⁡ρ2,F
There is one 1-form invariant.
Ω≔dx,dy,dz
Ω:=dx,dy,dz
Invariants⁡ρ2,Ω
dz
There is 1 invariant type (1,1) tensor.
T1≔Tensor:-GenerateTensors⁡dx,dy,dz,D_x,D_y,D_z
T1:=dx⁢D_x,dx⁢D_y,dx⁢D_z,dy⁢D_x,dy⁢D_y,dy⁢D_z,dz⁢D_x,dz⁢D_y,dz⁢D_z
Inv1≔Invariants⁡ρ2,T1
Inv1:=dx⁢D_x+dy⁢D_y+dz⁢D_z
There is 1 invariant symmetric type (0,2) tensor (but no invariant metrics).
T2≔Tensor:-GenerateSymmetricTensors⁡dx,dy,dz,2
T2:=dx⁢dx,12⁢dx⁢dy+12⁢dy⁢dx,12⁢dx⁢dz+12⁢dz⁢dx,dy⁢dy,12⁢dy⁢dz+12⁢dz⁢dy,dz⁢dz
Inv2≔Invariants⁡ρ2,T2
Inv2:=dz⁢dz
There are 3 type (1,2) invariant tensors.
T3≔Tensor:-GenerateTensors⁡T1,dx,dy,dz
T3:=dx⁢D_x⁢dx,dx⁢D_x⁢dy,dx⁢D_x⁢dz,dx⁢D_y⁢dx,dx⁢D_y⁢dy,dx⁢D_y⁢dz,dx⁢D_z⁢dx,dx⁢D_z⁢dy,dx⁢D_z⁢dz,dy⁢D_x⁢dx,dy⁢D_x⁢dy,dy⁢D_x⁢dz,dy⁢D_y⁢dx,dy⁢D_y⁢dy,dy⁢D_y⁢dz,dy⁢D_z⁢dx,dy⁢D_z⁢dy,dy⁢D_z⁢dz,dz⁢D_x⁢dx,dz⁢D_x⁢dy,dz⁢D_x⁢dz,dz⁢D_y⁢dx,dz⁢D_y⁢dy,dz⁢D_y⁢dz,dz⁢D_z⁢dx,dz⁢D_z⁢dy,dz⁢D_z⁢dz
Inv3≔Invariants⁡ρ2,T3
Inv3:=dx⁢D_x⁢dz+dy⁢D_y⁢dz+dz⁢D_z⁢dz,−dx⁢D_x⁢dz−dy⁢D_y⁢dz+dz⁢D_x⁢dx+dz⁢D_y⁢dy,−dy⁢D_x⁢dz+dz⁢D_x⁢dy
We can check the validity of the these calculations in two steps. First we use the matrices for the representation ρ1 to construct linear vector fields on the representation space V. This gives a vector field realization Γ of our Lie algebra. The invariance of the tensors Inv1, Inv2, Inv3 means that the Lie derivatives of these tensors with respect to the vector fields in Γ vanishes.
A≔map2⁡ApplyRepresentation,ρ2,e1,e2,e3
ChangeFrame⁡V
Alg1
Gamma≔map⁡convert,A,DGvector
Γ:=z⁢D_x,z⁢D_x+z⁢D_y,−x+y⁢D_x−y⁢D_y
Use the LieDerivative command to verify the invariance of the tensors calculated by the Invariants command.
Matrix⁡1,3,i,j↦LieDerivative⁡Gammaj,Inv1i
Matrix⁡1,3,i,j↦LieDerivative⁡Gammaj,Inv2i
Matrix⁡3,3,i,j↦LieDerivative⁡Gammaj,Inv3i
See Also
DifferentialGeometry
Tensor
Library
LieAlgebras
ApplyRepresentation
GenerateTensors
GenerateSymmetricTensors
Representation
Retrieve
Download Help Document