LieAlgebras[MatrixSubalgebra] - find the subalgebra of a Lie algebra which preserves a collection of tensors or subspaces of tensors
Calling Sequences
MatrixSubalgebra(rho, Inv)
MatrixSubalgebra(alg, M, Inv)
MatrixSubalgebra(alg, Gamma, Inv)
MatrixSubalgebra(alg1, Inv)
Parameters
rho - a representation of a Lie algebra
Inv - a list, where each element is a tensor or a list of tensors
alg - a name or a string, the name of an initialized Lie algebra 𝔤
M - a list of square matrices defining a Lie algebra, with the same structure equations as 𝔤
Gamma - a list of vector fields defining a Lie algebra, with the same structure equations as 𝔤
alg1 - a name or a string, the name of an initialized Lie algebra 𝔤 , which has been created by the command SimpleLieAlgebraData
Description
Examples
Let V be a vector space and φ: V → V a linear transformation (not necessarily invertible). Let T be a type (1,1) tensor on V. Then the (1,1) tensor φ ⋅ T is defined by
φ ⋅ TX, α = TφX, alpha − TX ,φ*alpha, where X∈ V and α∈ V *.
If φij and Tji are the components of φ and T with respect to a basis ei for V (and dual basis ϵi for V*), then φ ⋅ Tji = φjk Tki − φki Tjk .
This formula extends in the natural way to define φ ⋅ T for any tensor T. One says that T is φ−invariant if φ ⋅ T = 0.
Let g be a Lie algebra and let ρ: 𝔤 → glV be a representation of V. The set a = {x ∈𝔤 | ρx⋅ T= 0 } is a subalgebra of g. Likewise, if T is a subspace of tensors, then the set b = {x ∈𝔤 | ρx⋅ T∈ 𝒯 for all T∈ 𝒯} is also a subalgebra of g.
The command MatrixSubalgebra allows one to make subalgebras via this general construction. The argument Inv is a list where each element is a tensor or a list of tensors. For example, if Inv = R, S, T then MatrixSubalgebra calculates the subalgebra consisting of x ∈𝔤 such that ρx⋅ R= 0, ρx⋅ S∈ span S, T, ρx⋅ T ∈ span S, T.
When a Lie algebra is created with the command SimpleLieAlgebraData, its standard matrix representation is encoded in the Lie algebra data structure for that algebra. For such algebras, the construction of subalgebras via invariant tensors can be performed without explicitly specifying a representation.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
We construct the Lie algebras so3 and so(3)⊕so(2) as subalgebras of so(5). First, here are the 5×5 skew-symmetric matrices which define so5.
A≔map⁡Matrix,0,−1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,1,0
Calculate the structure equations and initialize.
LD≔LieAlgebraData⁡A,so5
LD:=e1,e2=e5,e1,e3=e6,e1,e4=e7,e1,e5=−e2,e1,e6=−e3,e1,e7=−e4,e2,e3=e8,e2,e4=e9,e2,e5=e1,e2,e8=−e3,e2,e9=−e4,e3,e4=e10,e3,e6=e1,e3,e8=e2,e3,e10=−e4,e4,e7=e1,e4,e9=e2,e4,e10=e3,e5,e6=e8,e5,e7=e9,e5,e8=−e6,e5,e9=−e7,e6,e7=e10,e6,e8=e5,e6,e10=−e7,e7,e9=e5,e7,e10=e6,e8,e9=e10,e8,e10=−e9,e9,e10=e8
lprint⁡%
_DG([["LieAlgebra", so5, [10, table( [ ] )]], [[[1, 2, 5], 1], [[1, 3, 6], 1], [[1, 4, 7], 1], [[1, 5, 2], -1], [[1, 6, 3], -1], [[1, 7, 4], -1], [[2, 3, 8], 1], [[2, 4, 9], 1], [[2, 5, 1], 1], [[2, 8, 3], -1], [[2, 9, 4], -1], [[3, 4, 10], 1], [[3, 6, 1], 1], [[3, 8, 2], 1], [[3, 10, 4], -1], [[4, 7, 1], 1], [[4, 9, 2], 1], [[4, 10, 3], 1], [[5, 6, 8], 1], [[5, 7, 9], 1], [[5, 8, 6], -1], [[5, 9, 7], -1], [[6, 7, 10], 1], [[6, 8, 5], 1], [[6, 10, 7], -1], [[7, 9, 5], 1], [[7, 10, 6], 1], [[8, 9, 10], 1], [[8, 10, 9], -1], [[9, 10, 8], 1]]])
DGsetup⁡LD
Lie algebra: so5
Define the representation space V. We shall define the invariant tensors we need on V.
DGsetup⁡x1,x2,x3,x4,x5,V
frame name: V
The standard inclusion of so3in so5 is given as the subalgebra of matrices which fix the vectors Dx4 and Dx5 .
Inv1≔D_x4,D_x5
Inv1:=D_x4,D_x5
MatrixSubalgebra⁡so5,A,Inv1
e1,e2,e5
Comparing with the matrices in A, we see this is precisely the subalgebra so3 we want.
A1,A2,A5
We can define so3⊕ so2 in so5 as the subalgebra which preserves the subspaces spanned by [Dx1, Dx2 , Dx5 ] and Dx4 , Dx5.
Inv2,Inv3≔D_x1,D_x2,D_x3,D_x4,D_x5
Inv2,Inv3:=D_x1,D_x2,D_x3,D_x4,D_x5
MatrixSubalgebra⁡so5,A,Inv2,Inv3
e1,e2,e5,e10
Example 2.
The computation of Example 1 can be done with the other calling sequences.
1. With a representation.
ρ≔Representation⁡so5,V,A
MatrixSubalgebra⁡ρ,Inv1
2. With a Lie algebra of vector fields.
Gamma≔evalDG⁡x2⁢D_x1−x1⁢D_x2,x3⁢D_x1−x1⁢D_x3,x4⁢D_x1−x1⁢D_x4,x5⁢D_x1−x1⁢D_x5,x3⁢D_x2−x2⁢D_x3,x4⁢D_x2−x2⁢D_x4,x5⁢D_x2−x2⁢D_x5,x4⁢D_x3−x3⁢D_x4,x5⁢D_x3−x3⁢D_x5,x5⁢D_x4−x4⁢D_x5
Γ:=x2⁢D_x1−x1⁢D_x2,x3⁢D_x1−x1⁢D_x3,x4⁢D_x1−x1⁢D_x4,x5⁢D_x1−x1⁢D_x5,x3⁢D_x2−x2⁢D_x3,x4⁢D_x2−x2⁢D_x4,x5⁢D_x2−x2⁢D_x5,x4⁢D_x3−x3⁢D_x4,x5⁢D_x3−x3⁢D_x5,x5⁢D_x4−x4⁢D_x5
MatrixSubalgebra⁡so5,Gamma,Inv1
3. With a Lie algebra constructed using the procedure SimpleLieAlgebraData .
LD1≔SimpleLieAlgebraData⁡so(5),alg1
LD1:=e1,e2=e5,e1,e3=e6,e1,e4=e7,e1,e5=−e2,e1,e6=−e3,e1,e7=−e4,e2,e3=e8,e2,e4=e9,e2,e5=e1,e2,e8=−e3,e2,e9=−e4,e3,e4=e10,e3,e6=e1,e3,e8=e2,e3,e10=−e4,e4,e7=e1,e4,e9=e2,e4,e10=e3,e5,e6=e8,e5,e7=e9,e5,e8=−e6,e5,e9=−e7,e6,e7=e10,e6,e8=e5,e6,e10=−e7,e7,e9=e5,e7,e10=e6,e8,e9=e10,e8,e10=−e9,e9,e10=e8
DGsetup⁡LD1
Lie algebra: alg1
MatrixSubalgebra⁡alg1,Inv1
Example 3.
Calculate the subalgebra of gl6 consisting of 2×2 block upper triangular matrices. First initialize the Lie algebra of all 6×6 matrices. The labels 'E' and 'theta' must be unassigned names.
LD≔SimpleLieAlgebraData⁡gl(6),gl6,labelformat=gl,labels=E,θ:
DGsetup⁡LD:
Define the representation space.
DGsetup⁡x1,x2,x3,x4,x5,x6,V6
frame name: V6
The matrices we want preserve the following subspaces of V.
Inv≔D_x1,D_x2,D_x1,D_x2,D_x3,D_x4
Inv:=D_x1,D_x2,D_x1,D_x2,D_x3,D_x4
A≔MatrixSubalgebra⁡gl6,Inv
A:=E11,E12,E13,E14,E15,E16,E21,E22,E23,E24,E25,E26,E33,E34,E35,E36,E43,E44,E45,E46,E55,E56,E65,E66
We can see what matrices these correspond to in several ways. One method is to first form a general linear combination X of the vectors in A.
X≔DGzip⁡seq⁡a‖i,i=1..24,A,plus
X:=a1⁢E11+a2⁢E12+a3⁢E13+a4⁢E14+a5⁢E15+a6⁢E16+a7⁢E21+a8⁢E22+a9⁢E23+a10⁢E24+a11⁢E25+a12⁢E26+a13⁢E33+a14⁢E34+a15⁢E35+a16⁢E36+a17⁢E43+a18⁢E44+a19⁢E45+a20⁢E46+a21⁢E55+a22⁢E56+a23⁢E65+a24⁢E66
Now calculate the matrix associated to X in the standard representation.
StandardRepresentation⁡gl6,X
Example 4.
In this example we calculate the intersection so8⋂sp8, ℝ. These are the skew-symmetric 8×8 matrices which also preserve a non-degenerate 2-form. Then we show that this intersection is isomorphic to u4. First we initialize the Lie algebra for so8. The labels 'R' and 'sigma' must be unassigned names.
LD≔SimpleLieAlgebraData⁡so(8),so8,labelformat=gl,labels=R,σ:
Lie algebra: so8
Now define an 8-dimensional representation space V and a 2-form Ω on V.
DGsetup⁡x1,x2,x3,x4,x5,x6,x7,x8,V8
frame name: V8
Ω≔evalDG⁡dx1&wdx5+dx2&wdx6+dx3&wdx7+dx4&wdx8
Ω:=dx1⁢⋀⁢dx5+dx2⁢⋀⁢dx6+dx3⁢⋀⁢dx7+dx4⁢⋀⁢dx8
Find the subalgebra of so8 which preserves this 2-form.
H≔MatrixSubalgebra⁡so8,Ω
H:=R12+R56,R13+R57,R14+R58,R15,R16+R25,R17+R35,R18+R45,R23+R67,R24+R68,R26,R27+R36,R28+R46,R34+R78,R37,R38+R47,R48
Here are the explicit matrices.
M≔map2⁡StandardRepresentation,so8,H
Check that the matrices belong to so8.
Query⁡M,so(8),MatrixAlgebra
true
Check that the matrices belong to sp8,ℝ.
Query⁡M,sp(8, R),MatrixAlgebra
The isomorphism to u4 is given by ΦABCD = A + I B, where A, B, C, D are 4×4 matrices. We use the command SubMatrix to construct this map.
Φ≔X↦LinearAlgebra:−SubMatrix⁡X,1..4,1..4+I⋅LinearAlgebra:−SubMatrix⁡X,5..8,1..4
Φ:=X→LinearAlgebra:-SubMatrix⁡X,1..4,1..4+I⁢LinearAlgebra:-SubMatrix⁡X,5..8,1..4
N≔map⁡Φ,M
Check that each of these matrices belong to u4.
Query⁡N,u(4),MatrixAlgebra
Finally, we see that the structure equations for these two matrix algebras are identical.
LieAlgebraData⁡M,alg1
e1,e2=e8,e1,e3=e9,e1,e4=e5,e1,e5=−2⁢e4+2⁢e10,e1,e6=e11,e1,e7=e12,e1,e8=−e2,e1,e9=−e3,e1,e10=−e5,e1,e11=−e6,e1,e12=−e7,e2,e3=e13,e2,e4=e6,e2,e5=e11,e2,e6=−2⁢e4+2⁢e14,e2,e7=e15,e2,e8=e1,e2,e11=−e5,e2,e13=−e3,e2,e14=−e6,e2,e15=−e7,e3,e4=e7,e3,e5=e12,e3,e6=e15,e3,e7=−2⁢e4+2⁢e16,e3,e9=e1,e3,e12=−e5,e3,e13=e2,e3,e15=−e6,e3,e16=−e7,e4,e5=e1,e4,e6=e2,e4,e7=e3,e5,e6=e8,e5,e7=e9,e5,e8=−e6,e5,e9=−e7,e5,e10=e1,e5,e11=e2,e5,e12=e3,e6,e7=e13,e6,e8=e5,e6,e11=e1,e6,e13=−e7,e6,e14=e2,e6,e15=e3,e7,e9=e5,e7,e12=e1,e7,e13=e6,e7,e15=e2,e7,e16=e3,e8,e9=e13,e8,e10=e11,e8,e11=−2⁢e10+2⁢e14,e8,e12=e15,e8,e13=−e9,e8,e14=−e11,e8,e15=−e12,e9,e10=e12,e9,e11=e15,e9,e12=−2⁢e10+2⁢e16,e9,e13=e8,e9,e15=−e11,e9,e16=−e12,e10,e11=e8,e10,e12=e9,e11,e12=e13,e11,e13=−e12,e11,e14=e8,e11,e15=e9,e12,e13=e11,e12,e15=e8,e12,e16=e9,e13,e14=e15,e13,e15=−2⁢e14+2⁢e16,e13,e16=−e15,e14,e15=e13,e15,e16=e13
LieAlgebraData⁡N,alg2,method=real
Example 5.
The compact real form of the exceptional Lie algebra g2 as the subalgebra of so7can be computed using the command MatrixAlgebras. First we initialize the Lie algebra so7.
RemoveFrame⁡so8:
LD≔SimpleLieAlgebraData⁡so(7),so7,labelformat=gl,labels=R,σ
LD:=e1,e2=e7,e1,e3=e8,e1,e4=e9,e1,e5=e10,e1,e6=e11,e1,e7=−e2,e1,e8=−e3,e1,e9=−e4,e1,e10=−e5,e1,e11=−e6,e2,e3=e12,e2,e4=e13,e2,e5=e14,e2,e6=e15,e2,e7=e1,e2,e12=−e3,e2,e13=−e4,e2,e14=−e5,e2,e15=−e6,e3,e4=e16,e3,e5=e17,e3,e6=e18,e3,e8=e1,e3,e12=e2,e3,e16=−e4,e3,e17=−e5,e3,e18=−e6,e4,e5=e19,e4,e6=e20,e4,e9=e1,e4,e13=e2,e4,e16=e3,e4,e19=−e5,e4,e20=−e6,e5,e6=e21,e5,e10=e1,e5,e14=e2,e5,e17=e3,e5,e19=e4,e5,e21=−e6,e6,e11=e1,e6,e15=e2,e6,e18=e3,e6,e20=e4,e6,e21=e5,e7,e8=e12,e7,e9=e13,e7,e10=e14,e7,e11=e15,e7,e12=−e8,e7,e13=−e9,e7,e14=−e10,e7,e15=−e11,e8,e9=e16,e8,e10=e17,e8,e11=e18,e8,e12=e7,e8,e16=−e9,e8,e17=−e10,e8,e18=−e11,e9,e10=e19,e9,e11=e20,e9,e13=e7,e9,e16=e8,e9,e19=−e10,e9,e20=−e11,e10,e11=e21,e10,e14=e7,e10,e17=e8,e10,e19=e9,e10,e21=−e11,e11,e15=e7,e11,e18=e8,e11,e20=e9,e11,e21=e10,e12,e13=e16,e12,e14=e17,e12,e15=e18,e12,e16=−e13,e12,e17=−e14,e12,e18=−e15,e13,e14=e19,e13,e15=e20,e13,e16=e12,e13,e19=−e14,e13,e20=−e15,e14,e15=e21,e14,e17=e12,e14,e19=e13,e14,e21=−e15,e15,e18=e12,e15,e20=e13,e15,e21=e14,e16,e17=e19,e16,e18=e20,e16,e19=−e17,e16,e20=−e18,e17,e18=e21,e17,e19=e16,e17,e21=−e18,e18,e20=e16,e18,e21=e17,e19,e20=e21,e19,e21=−e20,e20,e21=e19,R12,R13,R14,R15,R16,R17,R23,R24,R25,R26,R27,R34,R35,R36,R37,R45,R46,R47,R56,R57,R67,σ12,σ13,σ14,σ15,σ16,σ17,σ23,σ24,σ25,σ26,σ27,σ34,σ35,σ36,σ37,σ45,σ46,σ47,σ56,σ57,σ67
Lie algebra: so7
Now define a7-dimensional representation space V and a 3-form Φ on V.
DGsetup⁡x1,x2,x3,x4,x5,x6,x7,V7
frame name: V7
σ1≔evalDG⁡dx1&wdx3−dx2&wdx4
σ1:=dx1⁢⋀⁢dx3−dx2⁢⋀⁢dx4
σ2≔evalDG⁡dx1&wdx4+dx2&wdx3
σ2:=dx1⁢⋀⁢dx4+dx2⁢⋀⁢dx3
σ3≔evalDG⁡dx1&wdx2+dx3&wdx4
σ3:=dx1⁢⋀⁢dx2+dx3⁢⋀⁢dx4
Φ≔evalDG⁡σ1&wdx5−σ2&wdx6+σ3&wdx7+dx5&wdx6&wdx7
Φ:=dx1⁢⋀⁢dx2⁢⋀⁢dx7+dx1⁢⋀⁢dx3⁢⋀⁢dx5−dx1⁢⋀⁢dx4⁢⋀⁢dx6−dx2⁢⋀⁢dx3⁢⋀⁢dx6−dx2⁢⋀⁢dx4⁢⋀⁢dx5+dx3⁢⋀⁢dx4⁢⋀⁢dx7+dx5⁢⋀⁢dx6⁢⋀⁢dx7
Calculate the subalgebra of so7 which leaves the 3-form Φ invariant.
G2≔MatrixSubalgebra⁡so7,Φ
G2:=R12−R56,R13−R67,R14−R57,R15+R47,R16+R37,R17−R45,R23−R57,R24+R67,R25+R37,R26−R47,R27+R46,R34−R56,R35+R46,R36−R45
M2≔map2⁡StandardRepresentation,so7,G2
The Lie algebra defined by either the vectors G2 or the matrices M2 is a 14-dimensional Lie algebra with negative-definite Killing form and 2-dimensional Cartan subalgebra.
LD2≔LieAlgebraData⁡G2,g2:
DGsetup⁡LD2
Lie algebra: g2
LinearAlgebra:-IsDefinite⁡−Killing⁡
CartanSubalgebra⁡
e1,e4−e10
Example 6.
The split real form of the exceptional Lie algebra g2 as the subalgebra of so(4, 3) is similarly computed.
RemoveFrame⁡so7
8
LD≔SimpleLieAlgebraData⁡so(4, 3),so43,version=2,labelformat=gl,labels=R,σ:
Lie algebra: so43
Now define a 7-dimensional representation space V and a 3-form Φ on V.
Φ≔evalDG⁡σ1&wdx5−σ2&wdx6+σ3&wdx7−dx5&wdx6&wdx7
Φ:=dx1⁢⋀⁢dx2⁢⋀⁢dx7+dx1⁢⋀⁢dx3⁢⋀⁢dx5−dx1⁢⋀⁢dx4⁢⋀⁢dx6−dx2⁢⋀⁢dx3⁢⋀⁢dx6−dx2⁢⋀⁢dx4⁢⋀⁢dx5+dx3⁢⋀⁢dx4⁢⋀⁢dx7−dx5⁢⋀⁢dx6⁢⋀⁢dx7
G2≔MatrixSubalgebra⁡so43,Φ
G2:=R12−R56,R13−R67,R14−R57,R23−R57,R24+R67,R34−R56,R15+R47,R16+R37,R17−R45,R25+R37,R26−R47,R27+R46,R35+R46,R36−R45
M2≔map2⁡StandardRepresentation,so43,G2
The Lie algebra defined by either the vectors G2 or the matrices M2 is a 14-dimensional Lie algebra.
LD6≔LieAlgebraData⁡G2,g2S
LD6:=e1,e2=e4,e1,e3=e5,e1,e4=−e2,e1,e5=−e3,e1,e7=−e8+e10,e1,e8=e7+e11,e1,e9=e12,e1,e10=−e7−e11,e1,e11=−e8+e10,e1,e12=−e9,e1,e13=−e14,e1,e14=e13,e2,e3=e6,e2,e4=e1,e2,e6=−e3,e2,e7=e13,e2,e8=−2⁢e9+2⁢e14,e2,e9=e8,e2,e10=−e9+e14,e2,e11=−e12,e2,e12=e11,e2,e13=−e7,e2,e14=−e8,e3,e5=e1,e3,e6=e2,e3,e7=−2⁢e9,e3,e8=e13,e3,e9=2⁢e7,e3,e10=−e12+e13,e3,e11=e9,e3,e12=−e8+e10,e3,e13=−e8,e3,e14=e7,e4,e5=e6,e4,e6=−e5,e4,e7=−e9,e4,e8=−e12+e13,e4,e9=e7,e4,e10=−2⁢e12+2⁢e13,e4,e11=e14,e4,e12=e10,e4,e13=−e10,e4,e14=−e11,e5,e6=e4,e5,e7=−e12,e5,e8=e9−e14,e5,e9=−e8+e10,e5,e10=−e14,e5,e11=2⁢e12,e5,e12=−2⁢e11,e5,e13=−e11,e5,e14=e10,e6,e7=−e8,e6,e8=e7,e6,e9=e13,e6,e10=−e11,e6,e11=e10,e6,e12=−e14,e6,e13=−2⁢e14,e6,e14=2⁢e13,e7,e8=e6,e7,e9=2⁢e3,e7,e10=−e1+e6,e7,e12=e5,e7,e13=−e2,e7,e14=e3,e8,e9=e2,e8,e11=−e1+e6,e8,e12=−e3+e4,e8,e13=−e3,e8,e14=−e2,e9,e10=−e2−e5,e9,e11=e3,e9,e12=−e1,e9,e13=−e6,e10,e11=e6,e10,e12=e4,e10,e13=−e4,e10,e14=e5,e11,e12=−2⁢e5,e11,e13=−e5,e11,e14=−e4,e12,e14=e6,e13,e14=2⁢e6
DGsetup⁡LD6
Lie algebra: g2S
B≔KillingForm⁡
B:=−8⁢θ1⁢θ6−8⁢θ7⁢θ11+16⁢θ8⁢θ8+8⁢θ5⁢θ2−16⁢θ5⁢θ5+8⁢θ8⁢θ10+16⁢θ9⁢θ9+16⁢θ12⁢θ12+8⁢θ12⁢θ13−16⁢θ1⁢θ1−8⁢θ4⁢θ3−16⁢θ4⁢θ4+8⁢θ9⁢θ14+8⁢θ10⁢θ8+16⁢θ10⁢θ10−8⁢θ11⁢θ7+16⁢θ11⁢θ11+8⁢θ13⁢θ12+16⁢θ13⁢θ13−16⁢θ3⁢θ3−8⁢θ3⁢θ4+8⁢θ14⁢θ9+16⁢θ14⁢θ14−16⁢θ2⁢θ2+8⁢θ2⁢θ5−8⁢θ6⁢θ1−16⁢θ6⁢θ6+16⁢θ7⁢θ7
Tensor:-QuadraticFormSignature⁡B
e7,e7+2⁢e11,e8,e8−2⁢e10,e9,e9−2⁢e14,e12,e12−2⁢e13,e1,e1−2⁢e6,e2,e2+2⁢e5,e3,e3−2⁢e4,
map⁡nops,%
8,6,0
See Also
DifferentialGeometry
CartanSubalgebra
Killing
Query[MatrixAlgebra]
Representation
SimpleLieAlgebraData
StandardRepresentation
Download Help Document