Query[Gradation] - check if a list of subspaces defines a gradation of a Lie algebra
Calling Sequences
Query([g0, g1, ... , gN], "Gradation")
Query(T, "Gradation")
Parameters
g0, g1, - a list of independent vectors defining subspaces of a Lie algebra 𝔤
T - table, specifying the weights of the basis vectors of a Lie algebra 𝔤
Description
Examples
Let 𝔤 be a Lie algebra and let 𝔤0, 𝔤1, ... 𝔤N be a collection of subspaces such that 𝔤 = 𝔤0⊕𝔤1⊕⋅⋅⋅ ⊕𝔤N (vector space direct sum). Assign to the vectors in 𝔤i the weight wi ∈ℤ . Then this decomposition of 𝔤 defines a graduation of 𝔤 if 𝔤i, 𝔤j ⊂ 𝔤k where wk = wi +wj and 𝔤i, 𝔤j =0 if wi +wj is not an assigned weight.
Query([g0, g1, g2, ... gN], "Gradation") returns true if the subspaces 𝔤0, 𝔤1, ... 𝔤N define a gradation of the Lie algebra 𝔤 with default weights wi = i.
For the second calling sequence T is a table whose indices are the weights wi and whose entries are the subspaces 𝔤i , that is ,Twi = 𝔤i. The command Query(T, "Gradation") returns true if this systems of weights gives a graduation of 𝔤.
A general construction of gradations for semi-simple Lie algebras is given by GradeSemiSimpleLieAlgebra .
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
The Lie algebra of 4 x 4 upper triangular matrices is a 10 dimensional Lie algebra which is naturally graded - g0 consists of the matrices with only non-zero elements on the diagonal, 𝔤1 consists of the matrices with non-elements immediately above the diagonal (the super diagonal) and so on.
We use Query to verify this. First we use the program MatrixAlgebras to generate the Lie algebra data structure for the Lie algebra of upper triangular matrices. Here eij denotes the matrix with a 1 in the i-th row and j-th column.
L1≔MatrixAlgebras⁡Upper,4,alg1
L1:=e1,e2=e2,e1,e3=e3,e1,e4=e4,e2,e5=e2,e2,e6=e3,e2,e7=e4,e3,e8=e3,e3,e9=e4,e4,e10=e4,e5,e6=e6,e5,e7=e7,e6,e8=e6,e6,e9=e7,e7,e10=e7,e8,e9=e9,e9,e10=e9,e11,e12,e13,e14,e22,e23,e24,e33,e34,e44,ϵ11,ϵ12,ϵ13,ϵ14,ϵ22,ϵ23,ϵ24,ϵ33,ϵ34,ϵ44
DGsetup⁡L1:
To display the Lie algebra multiplication table, we need to increase the value of the interface parameter rtablesize.
interface⁡rtablesize=12
10
MultiplicationTable⁡LieTable
Now define the 4 subspaces which will define our gradation.
g0≔e11,e22,e33,e44:g1≔e12,e23,e34:g2≔e13,e24:g3≔e14:
Query⁡g0,g1,g2,g3,Gradation
true
Here is the same calculation, obtained using the second calling sequence. First create a table with specifies the weight of each basis vector.
Gr1≔table⁡0=g0,1=g1,2=g2,3=g3
Gr:=table0=e11,e22,e33,e44,1=e12,e23,e34,2=e13,e24,3=e14
Query⁡Gr1,Gradation
Example 2.
In this example we construct the standard gradation for sl3, ℝ, the Lie algebra of trace-free 3 ×3 matrices. First we use SimpleLieAlgebraData to retrieve the structure equations for this Lie algebra.
LD2≔SimpleLieAlgebraData⁡sl(3),alg2,labelformat=gl,labels=E,θ
LD2:=e1,e3=e3,e1,e4=2⁢e4,e1,e5=−e5,e1,e6=e6,e1,e7=−2⁢e7,e1,e8=−e8,e2,e3=−e3,e2,e4=e4,e2,e5=e5,e2,e6=2⁢e6,e2,e7=−e7,e2,e8=−2⁢e8,e3,e5=−e2+e1,e3,e6=e4,e3,e7=−e8,e4,e5=−e6,e4,e7=e1,e4,e8=e3,e5,e8=−e7,e6,e7=e5,e6,e8=e2,E11,E22,E12,E13,E21,E23,E31,E32,θ11,θ22,θ12,θ13,θ21,θ23,θ31,θ32
DGsetup⁡LD2
Lie algebra: alg2
Gr2≔table⁡0=E11,E22,1=E12,E23,2=E13,−1=E21,E32,−2=E31
Gr2:=table−1=E21,E32,0=E11,E22,−2=E31,1=E12,E23,2=E13
Query⁡Gr2,Gradation
See Also
DifferentialGeometry
LieAlgebras
MatrixAlgebras
MultiplicationTable
Query
Download Help Document