DifferentialGeometry/LieAlgebras/Query/RegularElement - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/RegularElement

Query[RegularElement] - check if an element of a Lie algebra is regular

Calling Sequences

     Query(X, options, RegularElement)

Parameters

     X        - a vector in a Lie algebra

     options  - the keywords arguments rank = m, algebratype = "semisimple"

 

Description

Examples

Description

• 

Let g be a Lie algebra. For each x 𝔤, let Nx = {y 𝔤 |  adxn y = 0}.  This is the generalized null space of  ad(x). The rank of g is defined as rank𝔤 = min{dimNx for x 𝔤}. An element x is called regular if dimNx = rank𝔤.  If x is a regular element, then the centralizer Zx is a Cartan subalgebra.  Conversely, if Zx is a Cartan subalgebra, then x is a regular element.

• 

Alternatively, for each x 𝔤, set pxλ = det λ Id adx. Then the rank of g is the smallest integer m (as x varies) such that the coefficient of  λm  in pxλ is nonzero.  

• 

With the calling sequence Query(X, RegularElement), the centralizer ZX of X is computed. It is then determined if this centralizer is a Cartan subalgebra.

• 

With the calling sequence Query(X, algebratype = semisimple, RegularElement), the calculations are simplified using the fact that the Cartan subalgebra must be Abelian (in general, it need only be nilpotent).

• 

With the calling sequence Query(X,  rank = m, "RegularElement"), the regularity of  X  is determined by calculating the generalized null space of X. This is the fastest method for checking if an element is regular, assuming that the rank of 𝔤  is known.

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We check for regular elements in the Lie algebra so5.  First use the command SimpleLieAlgebraData to obtain the structure equations for so5.

 

LDSimpleLieAlgebraDataso(5),so5

LD:=e1,e2=e5,e1,e3=e6,e1,e4=e7,e1,e5=e2,e1,e6=e3,e1,e7=e4,e2,e3=e8,e2,e4=e9,e2,e5=e1,e2,e8=e3,e2,e9=e4,e3,e4=e10,e3,e6=e1,e3,e8=e2,e3,e10=e4,e4,e7=e1,e4,e9=e2,e4,e10=e3,e5,e6=e8,e5,e7=e9,e5,e8=e6,e5,e9=e7,e6,e7=e10,e6,e8=e5,e6,e10=e7,e7,e9=e5,e7,e10=e6,e8,e9=e10,e8,e10=e9,e9,e10=e8

(2.1)

DGsetupLD

Lie algebra: so5

(2.2)

 

The vector e1 is not regular.

Querye1,RegularElement

false

(2.3)

Querye1,rank=2,RegularElement

false

(2.4)

 

The element e1 + e5 2e8 is regular.

QueryevalDGe1+e52e8,RegularElement

true

(2.5)
so5 > 

QueryevalDGe1+e52e8,rank=2,RegularElement

true

(2.6)
so5 > 

QueryevalDGe1+e52e8,algebratype=semisimple,RegularElement

true

(2.7)

 

See Also

DifferentialGeometry

Adjoint

Centralizer

LieAlgebras

Query

Query[CartanSubalgebra]

Query[Nilpotent]

Query[Abelian]

SimpleLieAlgebraData