Query[RegularElement] - check if an element of a Lie algebra is regular
Calling Sequences
Query(X, options, RegularElement)
Parameters
X - a vector in a Lie algebra
options - the keywords arguments rank = m, algebratype = "semisimple"
Description
Examples
Let g be a Lie algebra. For each x ∈𝔤, let Nx = {y ∈𝔤 | adxn y = 0}. This is the generalized null space of ad(x). The rank of g is defined as rank𝔤 = min{dimNx for x ∈𝔤}. An element x is called regular if dimNx = rank𝔤. If x is a regular element, then the centralizer Zx is a Cartan subalgebra. Conversely, if Zx is a Cartan subalgebra, then x is a regular element.
Alternatively, for each x ∈𝔤, set pxλ = det λ Id− adx. Then the rank of g is the smallest integer m (as x varies) such that the coefficient of λm in pxλ is nonzero.
With the calling sequence Query(X, RegularElement), the centralizer ZX of X is computed. It is then determined if this centralizer is a Cartan subalgebra.
With the calling sequence Query(X, algebratype = semisimple, RegularElement), the calculations are simplified using the fact that the Cartan subalgebra must be Abelian (in general, it need only be nilpotent).
With the calling sequence Query(X, rank = m, "RegularElement"), the regularity of X is determined by calculating the generalized null space of X. This is the fastest method for checking if an element is regular, assuming that the rank of 𝔤 is known.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
We check for regular elements in the Lie algebra so5. First use the command SimpleLieAlgebraData to obtain the structure equations for so5.
LD≔SimpleLieAlgebraData⁡so(5),so5
LD:=e1,e2=e5,e1,e3=e6,e1,e4=e7,e1,e5=−e2,e1,e6=−e3,e1,e7=−e4,e2,e3=e8,e2,e4=e9,e2,e5=e1,e2,e8=−e3,e2,e9=−e4,e3,e4=e10,e3,e6=e1,e3,e8=e2,e3,e10=−e4,e4,e7=e1,e4,e9=e2,e4,e10=e3,e5,e6=e8,e5,e7=e9,e5,e8=−e6,e5,e9=−e7,e6,e7=e10,e6,e8=e5,e6,e10=−e7,e7,e9=e5,e7,e10=e6,e8,e9=e10,e8,e10=−e9,e9,e10=e8
DGsetup⁡LD
Lie algebra: so5
The vector e1 is not regular.
Query⁡e1,RegularElement
false
Query⁡e1,rank=2,RegularElement
The element e1 + e5 −2e8 is regular.
Query⁡evalDG⁡e1+e5−2⁢e8,RegularElement
true
Query⁡evalDG⁡e1+e5−2⁢e8,rank=2,RegularElement
Query⁡evalDG⁡e1+e5−2⁢e8,algebratype=semisimple,RegularElement
See Also
DifferentialGeometry
Adjoint
Centralizer
LieAlgebras
Query
Query[CartanSubalgebra]
Query[Nilpotent]
Query[Abelian]
SimpleLieAlgebraData
Download Help Document