Details for SimpleLieAlgebraData - definitions of the classical matrix algebras
Description
Examples
The following two tables describe the Lie algebras which can be initialized with the command SimpleLieAlgebraData .
The Classical Simple Real Matrix Algebras
Name
Dim
Type
Rank
Matrices
Conditions
sl(n)
n2−1
A
n −1
trA = 0
Example 1.
sun
n2 −1
n−1
Z = A1 +I A2
Z + Z† = 0 , A1 + A1t = 0, A2 − A2t = 0.
Example 2
sup,q
version 1
Z1Z2Z3Z4−Z1†Z5−Z5 −Z3 Z6 = A1+IA2B1+ IB2 C1 + IC2D1 + I D2t −A1+IA2t E1 +IE2E1 + IE2t−C1 +C2t F1+IF2t
Z1, Z2 , Z4 q ×q ; Z3 , Z5 q×p−q; Z6 p−q×p−q
Z1, Z3 ,Z5 arbitrary, Z2+Z2†=0,Z4 +Z4†=0,Z6 +Z6†=0, trZ6= 0
B1, D1, F1 skew-symmetric
B2, D2, F2 symmetric
Example 3
sup, q
version 2
n = p+q
Z1 Z2Z2†Z3= A1+ I A2B1 + I B2B1t − I B2t C1+IC2
Z1 p×p, Z2 q×q,Z3 p×q
Z1 + Z1† =0, Z3 + Z3† =0, trZ1 + trZ3 =0, Z2 arbitrary
A1 + A1t = 0, A2 − A2t = 0, C1 + C1t = 0, C2 − C2t =0, trA1 + trC1= 0
su*n
n even
n2 − 1
Z1Z2−Z2‾ Z‾1 = A1 + I A2B1 + I B2−B1 + I B2 A1 − I A2
trZ1 + trZ1‾ = 0, trA1 =0.
Example 4
sop,q
p +q = n, n=2 m +1
12 nn−1
B
m
ABCD−AtE−E−CtF
A, B, D q×q; C,E, q×p−q; F p−q×p−q
A, C, E arbitrary
B+ Bt =0, D + Dt=0 , F + Ft=0
Example 5
AB−BtC
A p×p; B p×q; C q×q
A + At=0, C + Ct =0, B arbitrary
spn, ℝ
n = 2 m
nn +1
C
ABC−At
A,B,C m×m
B − Bt =0, B − Bt =0
Example 6
spp, q
2 p +2 q = n
Z1Z2Z3Z4Z2†Z5Z4tZ6−Z3‾Z4‾Z1‾−Z2‾Z4† −Z6−Z2tZ5‾= A1 +IA2 B1 +IB2 C1 +IC2D1 +ID2B1t −I B2tE1 +IE2D1t +ID2tF1 +IF2−C1 +IC2D1 −ID2A1 − IA2−B1 +IB2D1 +ID2−F1 +IF2−B1t +IB2tE1 − IE2
Z1, Z3 p×p, Z2, Z4 p×q, Z5, Z6 q×q
Z1 +Z1† = 0, Z5 +Z5† =0, Z2, Z4 arbitrary
Z3 − Z3t =0, Z6− Z6t = 0,
A1 +A1t =0, A2 − A2t =0, E1 +E1t =0 , E2 − E2t =0,
C1 − C1t =0, C1 + C1t =0, F1− F1t =0, F1 + F1t =0
Example 7
spn
nn+1
Z1Z2−Z‾2Z1‾= A1 + IA2B1+ IB2−B1+ IB2A1 − IA2
Z1, Z2 m×m
Z1 + Z1† = 0, Z2 − Z2t = 0,
A1 +A1t=0, A1− A1t=0, B1 −B1t =0, B2− B2t =0,
sop, q
p +q = n
n=2 m
D
B+ Bt =0, D + Dt=0 , F + Ft =0
Example 8
n=2 m +1
A + At=0, C + Ct=0, B arbitrary
Example 9
so*n
Z1Z2−Z2‾ Z‾1 = A1+IA2 B1+I B2−Bt +I B2tA1 − IA2
Z1 +Z1t =0, Z2 − Z2† = 0
A1 +A1t =0, A2+A2t =0, B1−B1t =0, B2 + B2t =0
Example 10
The following algebras can also be initialized with the command SimpleLieAlgebraData .
Other Classical Real Matrix Algebras
gln,ℝ
n2
Z, A1 , A2 n×n
Example 11
gln, ℂ
2 n2
Z = A1 + I A2
sln,ℂ
2n2 −1
Z, A1 , A2 trace-free
Example 12
up, q
Z1 p×p, Z2 q×q, Z3 p×q
Z1 + Z1† =0, Z3+ Z3† =0, Z2 arbitrary
A1 + A1t = 0, A2 − A2t = 0, C1 + C1t = 0, C2 − C2t =0,
Example 13
son,ℂ
nn−1
Z = [A1+IA2]
Z, A1, A2 skew-symmetric
Example 14
spn, ℂ
2 nn +1
Z1Z2Z3−Z1t = A1 + IA2B1+IB2C1+IC2−At − IA2t
Z1, Z2,Z3, A1, A2, B1, B2, C1, C2 n×n
Z2 + Z2t =0, Z3 + Z3t =0,
B1+B1t =0, B2+B2t =0, C1 +C1t =0, C2+C2t =0
Example 15
soln
12nn+1
A n×n
upper triangular
Example 16
niln
12nn−1
strictly upper triangular
Example 17
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1. sln
LD1≔SimpleLieAlgebraData⁡sl(3),sl3:
StandardRepresentation⁡LD1
Example 2. sun
LD2≔SimpleLieAlgebraData⁡su(3),su3:
StandardRepresentation⁡LD2
Example 3. sup, q
LD3I≔SimpleLieAlgebraData⁡su(3,1),su31I:
StandardRepresentation⁡LD3I
LD3II≔SimpleLieAlgebraData⁡su(3,1),su31II,version=2:
StandardRepresentation⁡LD3II
Example 4. su*n
LD4≔SimpleLieAlgebraData⁡su*(4),sus4:
StandardRepresentation⁡LD4
Example 5. sop, q
LD5I≔SimpleLieAlgebraData⁡so(3,2),su32I:
StandardRepresentation⁡LD5I
LD5II≔SimpleLieAlgebraData⁡su(3,2),su32II,version=2:
Example 6. spn, ℝ
LD6≔SimpleLieAlgebraData⁡sp(4, R),sp4R:
StandardRepresentation⁡LD6
Example 7. spp, q
LD7≔SimpleLieAlgebraData⁡sp(2, 2),sp22:
StandardRepresentation⁡LD7
Example 8. spn
LD8≔SimpleLieAlgebraData⁡sp(4),sp4:
StandardRepresentation⁡LD8
Example 9. sop,q
LD9I≔SimpleLieAlgebraData⁡so(3,1),so31:
StandardRepresentation⁡LD9I
LD9II≔SimpleLieAlgebraData⁡so(3,1),so31,version=2:
StandardRepresentation⁡LD9II
Example 10. so*n
LD10≔SimpleLieAlgebraData⁡so*(4),sos:
StandardRepresentation⁡LD10
Example 11. gln, ℝ
LD11R≔SimpleLieAlgebraData⁡gl(2, R),gl2R:
StandardRepresentation⁡LD11R
LD11C≔SimpleLieAlgebraData⁡gl(2, C),gl2C:
StandardRepresentation⁡LD11C
Example 12. sln, ℂ
LD12≔SimpleLieAlgebraData⁡sl(2, C),sl2C:
StandardRepresentation⁡LD12
Example 13. up, q
LD13≔SimpleLieAlgebraData⁡u(2,1),u21:
StandardRepresentation⁡LD13
Example 14. son, ℂ
LD14≔SimpleLieAlgebraData⁡so(3, C),so3C:
StandardRepresentation⁡LD14
Example 15. spn, ℂ
LD15≔SimpleLieAlgebraData⁡sp(4, C),sp4C:
StandardRepresentation⁡LD15
Example 16. soln
LD16≔SimpleLieAlgebraData⁡sol(4),sol4:
StandardRepresentation⁡LD16
Example 17. niln
LD17≔SimpleLieAlgebraData⁡nil(4),nil4:
StandardRepresentation⁡LD17
Download Help Document