SimpleLieAlgebraData Details - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : SimpleLieAlgebraData Details

Details for SimpleLieAlgebraData - definitions of the classical matrix algebras

 

Description

Examples

Description

The following two tables describe the Lie algebras which can be initialized with the command SimpleLieAlgebraData .

 

The Classical Simple Real Matrix Algebras

 

 

Name

Dim

Type

Rank

Matrices

Conditions

Examples

sl(n)

 n21

A

n 1

A

trA = 0

Example 1.

sun

n2 1

A

n1

Z = A1 +I A2

Z + Z = 0 , A1 + A1t = 0, A2  A2t = 0.

Example 2

sup,q

version 1

n2 1

A

 n1

Z1Z2Z3Z4Z1Z5Z5 Z3 Z6 = A1+IA2B1+ IB2 C1 + IC2D1 + I D2t A1+IA2t E1 +IE2E1 + IE2tC1 +C2t F1+IF2t

Z1, Z2 , Z4 q ×q ; Z3 , Z5 q×pq; Z6 pq×pq

Z1, Z3 ,Z5 arbitrary, Z2+Z2=0,Z4 +Z4=0,Z6 +Z6=0, trZ6= 0

 B1, D1, F1 skew-symmetric

 B2, D2, F2 symmetric

Example 3

 sup, q

version 2

n2 1 

n = p+q

A

n1

Z1 Z2Z2Z3= A1+ I A2B1 + I B2B1t  I B2t C1+IC2 

Z1 p×p, Z2 q×q,Z3 p×q 

Z1 + Z1 =0, Z3 + Z3 =0, trZ1 + trZ3 =0, Z2 arbitrary

A1 + A1t = 0, A2  A2t = 0, C1 + C1t = 0, C2  C2t =0, trA1 + trC1= 0

Example 3

su*n

n even

n2  1

A

n1

Z1Z2Z2 Z1 = A1 + I A2B1 + I B2B1 + I B2 A1  I A2

trZ1 + trZ1 = 0, trA1 =0.

Example 4

sop,q

p +q = n, n=2 m +1

version 1

12 nn1

B

m

ABCDAtEECtF

A, B, D q×q; C,E, q×pq; F pq×pq

A, C, E arbitrary

B+ Bt =0, D + Dt=0 , F + Ft=0

Example 5

sop,q

p +q = n, n=2 m +1

version 2

12 nn1

B

m

ABBtC

 

A p×p; B p×q; C q×q

A + At=0, C + Ct =0, B arbitrary

Example 5

spn, ℝ

n = 2 m

nn +1

C

m

ABCAt

A,B,C m×m

B  Bt =0, B  Bt =0

Example 6

spp, q

2 p +2 q = n

nn +1

C

m

Z1Z2Z3Z4Z2Z5Z4tZ6Z3Z4Z1Z2Z4 Z6Z2tZ5= A1 +IA2 B1 +IB2 C1 +IC2D1 +ID2B1t I B2tE1 +IE2D1t +ID2tF1 +IF2C1 +IC2D1 ID2A1  IA2B1 +IB2D1 +ID2F1 +IF2B1t +IB2tE1  IE2

Z1, Z3 p×p, Z2, Z4 p×q, Z5, Z6 q×q

Z1 +Z1 = 0, Z5 +Z5 =0, Z2, Z4 arbitrary

Z3  Z3t =0, Z6 Z6t = 0,

A1 +A1t =0, A2  A2t =0, E1 +E1t =0 , E2  E2t =0, 

C1  C1t =0, C1 + C1t =0, F1 F1t =0, F1 + F1t =0 

 

Example 7

spn

n = 2 m

nn+1

C

m

Z1Z2Z2Z1= A1 + IA2B1+ IB2B1+ IB2A1  IA2

Z1, Z2 m×m

Z1 + Z1 = 0, Z2  Z2t = 0,

A1 +A1t=0, A1 A1t=0, B1 B1t =0, B2 B2t =0, 

Example 7

sop, q

p +q = n

n=2 m

version 1

 

12 nn1

D

m

ABCDAtEECtF

A, B, D q×q; C,E, q×pq; F pq×pq

A, C, E arbitrary

B+ Bt =0, D + Dt=0 , F + Ft =0

 

Example 8

sop, q

p +q = n

 n=2 m +1

version 2

 

12 nn1

D

m

ABBtC

A p×p; B p×q; C q×q

A + At=0, C + Ct=0, B arbitrary

 

Example 9

so*n

n = 2 m

12 nn1

D

m

Z1Z2Z2 Z1 = A1+IA2 B1+I B2Bt +I B2tA1  IA2

Z1, Z2 m×m 

Z1 +Z1t =0, Z2  Z2 = 0

A1 +A1t =0, A2+A2t =0, B1B1t =0, B2 + B2t =0

Example 10 

 

The following algebras can also be initialized with the command SimpleLieAlgebraData .

 

Other Classical Real Matrix Algebras

 

Name

Dim

Matrices

Conditions

Examples

 

gln,ℝ

 n2

A

Z, A1 , A2 n×n

Example 11

gln, ℂ

 2 n2

Z = A1 + I A2

Z, A1 , A2 n×n

Example 11

sln,ℂ

2n2 1

Z = A1 + I A2

Z, A1 , A2 n×n

Z, A1 , A2 trace-free

Example 12

up, q

n2

Z1 Z2Z2Z3= A1+ I A2B1 + I B2B1t  I B2t C1+IC2 

Z1 p×p, Z2 q×q, Z3 p×q 

Z1 + Z1 =0, Z3+ Z3 =0, Z2 arbitrary

A1 + A1t = 0, A2  A2t = 0, C1 + C1t = 0, C2  C2t =0, 

Example 13

son,ℂ

 nn1

Z = [A1+IA2]

Z, A1 , A2 n×n

Z, A1, A2 skew-symmetric

Example 14

spn, ℂ

2 nn +1

Z1Z2Z3Z1t = A1 + IA2B1+IB2C1+IC2At  IA2t

Z1, Z2,Z3, A1, A2, B1, B2, C1, C2 n×n

Z2 + Z2t =0, Z3 + Z3t =0,

B1+B1t =0, B2+B2t =0, C1 +C1t =0, C2+C2t =0

 Example 15

soln

12nn+1

A

A n×n

upper triangular

Example 16

niln

12nn1

A

A n×n

strictly upper triangular

Example 17

 

 

Examples

 

withDifferentialGeometry:withLieAlgebras:

 

Example 1. sln

LD1SimpleLieAlgebraDatasl(3),sl3:

StandardRepresentationLD1

 

Example 2. sun

LD2SimpleLieAlgebraDatasu(3),su3:

StandardRepresentationLD2

 

Example 3. sup, q

LD3ISimpleLieAlgebraDatasu(3,1),su31I:

StandardRepresentationLD3I

LD3IISimpleLieAlgebraDatasu(3,1),su31II,version=2:

StandardRepresentationLD3II

 

Example 4. su*n

LD4SimpleLieAlgebraDatasu*(4),sus4:

StandardRepresentationLD4

 

Example 5. sop, q

LD5ISimpleLieAlgebraDataso(3,2),su32I:

StandardRepresentationLD5I

LD5IISimpleLieAlgebraDatasu(3,2),su32II,version=2:

StandardRepresentationLD3II

 

 

Example 6. spn, ℝ 

LD6SimpleLieAlgebraDatasp(4, R),sp4R:

StandardRepresentationLD6

 

Example 7. spp, q

LD7SimpleLieAlgebraDatasp(2, 2),sp22:

StandardRepresentationLD7

Example 8. spn

LD8SimpleLieAlgebraDatasp(4),sp4:

StandardRepresentationLD8

 

Example 9. sop,q

LD9ISimpleLieAlgebraDataso(3,1),so31:

StandardRepresentationLD9I

LD9IISimpleLieAlgebraDataso(3,1),so31,version=2:

StandardRepresentationLD9II

 

Example 10. so*n

LD10SimpleLieAlgebraDataso*(4),sos:

StandardRepresentationLD10

 

Example 11. gln, ℝ

LD11RSimpleLieAlgebraDatagl(2, R),gl2R:

StandardRepresentationLD11R

LD11CSimpleLieAlgebraDatagl(2, C),gl2C:

StandardRepresentationLD11C

 

Example 12. sln, ℂ

LD12SimpleLieAlgebraDatasl(2, C),sl2C:

StandardRepresentationLD12

 

Example 13. up, q

LD13SimpleLieAlgebraDatau(2,1),u21:

StandardRepresentationLD13

 

Example 14. son, ℂ

LD14SimpleLieAlgebraDataso(3, C),so3C:

StandardRepresentationLD14

 

Example 15. spn, ℂ

LD15SimpleLieAlgebraDatasp(4, C),sp4C:

StandardRepresentationLD15

 

Example 16. soln

LD16SimpleLieAlgebraDatasol(4),sol4:

StandardRepresentationLD16

 

Example 17. niln

LD17SimpleLieAlgebraDatanil(4),nil4:

StandardRepresentationLD17