DifferentialGeometry
LieBracket
calculate the Lie bracket of two vector fields or 2 vectors in a Lie algebra
Calling Sequence
Parameters
Description
Examples
LieBracket(X, Y)
X, Y
-
vector fields, defined on the same manifold or Lie algebra
If X is a vector field on a manifold M and f is a real-valued function on M, then X may be applied to f to give a new real valued function. In coordinates, X(f) is the directional derivative of f with respect to X. The Lie bracket of two vector fields X, Y , defined on a manifold M, is the vector field Z defined by the commutator rule Z(f) = X(Y(f)) - Y(X(f)). The standard notation for the Lie bracket is Z = [X, Y].
The LieBracket command is also used to calculate brackets in an abstract Lie algebra.
This command is part of the DifferentialGeometry package, and so can be used in the form LieBracket(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-LieBracket.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Define a 2-dimensional manifold M..
DGsetup⁡x,y,M:
Example 1.
Define a pair of vector fields X1 and Y1.
X1≔evalDG⁡y2⁢D_x+x2⁢D_y
X1≔y2⁢D_x+x2⁢D_y
Y1≔evalDG⁡x⁢D_x
Y1≔x⁢D_x
Calculate the Lie bracket of X1 and Y1.
Z≔LieBracket⁡X1,Y1
Z≔y2⁢D_x−2⁢x2⁢D_y
Let's check this result against the commutator definition of the Lie bracket acting on functions. To apply a vector field to a function we use the LieDerivative command.
LHSofDefinition≔LieDerivative⁡Z,F⁡x,y
LHSofDefinition≔y2⁢∂∂xF⁡x,y−2⁢x2⁢∂∂yF⁡x,y
RHSofDefinition≔LieDerivative⁡X1,LieDerivative⁡Y1,F⁡x,y−LieDerivative⁡Y1,LieDerivative⁡X1,F⁡x,y
RHSofDefinition≔y2⁢∂∂xF⁡x,y+x⁢∂2∂x2F⁡x,y+x3⁢∂2∂x∂yF⁡x,y−x⁢y2⁢∂2∂x2F⁡x,y+2⁢x⁢∂∂yF⁡x,y+x2⁢∂2∂x∂yF⁡x,y
simplify⁡RHSofDefinition
y2⁢∂∂xF⁡x,y−2⁢x2⁢∂∂yF⁡x,y
Example 2.
Here is the general coordinate formula for the Lie bracket of two vector fields defined on a 2-dimensional manifold.
X2≔evalDG⁡a⁡x,y⁢D_x+b⁡x,y⁢D_y
X2≔a⁡x,y⁢D_x+b⁡x,y⁢D_y
Y2≔evalDG⁡c⁡x,y⁢D_x+d⁡x,y⁢D_y
Y2≔c⁡x,y⁢D_x+d⁡x,y⁢D_y
LieBracket⁡X2,Y2
−c⁡x,y⁢∂∂xa⁡x,y−d⁡x,y⁢∂∂ya⁡x,y+a⁡x,y⁢∂∂xc⁡x,y+b⁡x,y⁢∂∂yc⁡x,y⁢D_x+−c⁡x,y⁢∂∂xb⁡x,y−d⁡x,y⁢∂∂yb⁡x,y+a⁡x,y⁢∂∂xd⁡x,y+b⁡x,y⁢∂∂yd⁡x,y⁢D_y
Example 3.
Two vector fields are said to commute if their Lie bracket is 0. For example:
X3≔evalDG⁡x⁢D_x+y⁢D_y
X3≔x⁢D_x+y⁢D_y
Y3≔evalDG⁡−y⁢x2x2+y2⁢D_x+x3x2+y2⁢D_y
Y3≔−y⁢x2⁢D_xx2+y2+x3⁢D_yx2+y2
LieBracket⁡X3,Y3
0⁢D_x
Example 4.
The Lie bracket satisfies the Jacobi identity [[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X] = 0. For example:
X≔evalDG⁡sin⁡x⁢D_x+ln⁡x⁢y⁢D_y
X≔sin⁡x⁢D_x+ln⁡x⁢y⁢D_y
Y≔evalDG⁡cos⁡y⁢D_x+exp⁡x⁢D_y
Y≔cos⁡y⁢D_x+ⅇx⁢D_y
Z≔evalDG⁡x⁢y3⁢D_x−y⁢x3⁢D_y
Z≔y3⁢x⁢D_x−y⁢x3⁢D_y
LieBracket⁡LieBracket⁡X,Y,Z&plusLieBracket⁡LieBracket⁡Z,X,Y&plusLieBracket⁡LieBracket⁡Y,Z,X
Example 5.
Use LieAlgebraData and DGsetup to initialize a Lie algebra.
LD≔LieAlgebraData⁡x1,x2=x3,x3,x1=2⁢x1,x3,x2=−2⁢x2,x1,x2,x3,alg
LD≔e1,e2=e3,e1,e3=−2⁢e1,e2,e3=2⁢e2
DGsetup⁡LD
Lie algebra: alg
MultiplicationTable⁡LieTable
| e1e2e3----------------e1| 0e3−2⁢e1e2| −e302⁢e2e3| 2⁢e1−2⁢e20
Calculate the Lie bracket of 2 vectors in this Lie algebra.
LieBracket⁡e1+e2,e2+e3
−2⁢e1+2⁢e2+e3
See Also
ExteriorDerivative
LieDerivative
Physics[ExteriorDerivative]
Physics[LieDerivative]
Physics[LieBracket]
Physics
Download Help Document