Tensor[AdaptedSpinorDyad] - find a spinor dyad which transforms the Weyl spinor to normal form
Calling Sequences
AdaptedSpinorDyad( W, PT, options)
Parameters
W - a symmetric rank 4 covariant spinor
PT - the Petrov type of the spinor W
options - one or more of the keyword arguments method and output
Description
Examples
Let WABCD be a rank 4 symmetric spinor and let σa AA' be a solder form on a 4-dimensional spacetime of signature [1, -1, -1, -1]. Then the rank 4 tensor
Wabcd = σa AA' σb BB' σc CC' σd DD'WABCD ε A' B' ε C' D' + ε A Bε CD W‾A'B'C'D'
enjoys all the symmetries of the Weyl tensor. It is skew-symmetric in the indices ab and cd, satisfies the cyclic identity on bcd, and is trace-free with respect to the metric defined by the solder form σ.
If ιA, οA is a spinor dyad (a pair of rank-2 spinors with ιAοA =1) then the spinor WABCD can be expressed as
WABCD = Ψ0 ιAιBιCιD−4 Ψ1 ι(AιBιCοD)+ 6 Ψ2 ι(AιBοCοD)−4 Ψ3 ι(AοBοCοD) + Ψ4 οAοBοCοD . (*)
The coefficients Ψ0, Ψ1, Ψ2, Ψ3, Ψ4 coincide with the Newman-Penrose Weyl scalars for the Weyl tensor Wabcd constructed from the null tetrad defined by the spinor dyad ιA, οA.
The Petrov type of the spinor WABCD coincides with the Petrov type of the Weyl tensor Wabcd or the Petrov type of the spacetime determined by the Newman-Penrose Weyl scalars. See NPCurvatureScalars, NullTetrad, PetrovType, SolderForm, WeylSpinor.
The normal forms for the Newman-Penrose coefficients are as follows.
Type I. Ψ0= 32 η χ , Ψ1 = 0, Ψ2=12η2 − χ, Ψ3 =0, Ψ4 = 32η χ .
Type II. Ψ0 = 0,Ψ1 = 0,Ψ2=η, Ψ3 =0, Ψ4 = 6 η.
Type III. Ψ0= 0, Ψ1 = 0, Ψ2=0, Ψ3 =1, Ψ4= 0.
Type D. Ψ0= 0, Ψ1 = 0, Ψ2=η, Ψ3 = 0, Ψ4= 0.
Type N. Ψ0= 0, Ψ1 =0, Ψ2 = 0, Ψ3 = 0, Ψ4 = 1.
Type O. Ψ0 = 0, Ψ1 = 0, Ψ2 =0, Ψ3 =0, Ψ4 = 0.
See Penrose and Rindle Vol. 2, Section 8.3.
Thus, for example, if the Petrov type of the Weyl spinor is D, then there is a spinor dyad ιA, οA such that the Weyl spinor takes the form WABCD= 6 η ι(AιBιCοD). Such a spinor dyad is said to be an adapted spinor dyad.
The command AdaptedSpinorDyad returns a contravariant spinor dyad which will put the given Weyl spinor in the above normal form. If the Petrov type is I, then the values of η, χ are also returned. If the Petrov type is II or D, the value of η is given.
The adapted spinor dyads need not be unique; multiple adapted spinor dyads may be returned. All computed dyads will be returned with the keyword argument output = all. If the type is III or N, then a quasi-adapted dyad (where the 1 non-zero Newman-Penrose coefficient is not normalized to 1) will be calculated if method = "unnormalized".
The command AdaptedSpinorDyad is part of the DifferentialGeometry:-Tensor package. It can be used in the form AdaptedSpinorDyad(...) only after executing the commands with(DifferentialGeometry) and with(Tensor), but can always be used by executing DifferentialGeometry:-Tensor:-AdaptedSpinorDyad(...).
with⁡DifferentialGeometry:with⁡Tensor:
Set the global environment variable _EnvExplicit to true to insure that our results are free of RootOf expressions.
_EnvExplicit≔true:
We give examples of Weyl spinors of each Petrov type and calculate an adapted spinor dyad. We check that the spinor dyad has the desired properties.
First create the spinor bundle over a 4 dimensional spacetime.
DGsetup⁡t,x,y,z,z1,z2,w1,w2,Spin
frame name: Spin
In order to construct the Weyl spinors for our examples, we need a basis for the vector space of symmetric rank 4 spinors. This we obtain from the GenerateSymmetricTensors command.
S≔GenerateSymmetricTensors⁡dz1,dz2,4
S:=dz1⁢dz1⁢dz1⁢dz1,14⁢dz1⁢dz1⁢dz1⁢dz2+14⁢dz1⁢dz1⁢dz2⁢dz1+14⁢dz1⁢dz2⁢dz1⁢dz1+14⁢dz2⁢dz1⁢dz1⁢dz1,16⁢dz1⁢dz1⁢dz2⁢dz2+16⁢dz1⁢dz2⁢dz1⁢dz2+16⁢dz1⁢dz2⁢dz2⁢dz1+16⁢dz2⁢dz1⁢dz1⁢dz2+16⁢dz2⁢dz1⁢dz2⁢dz1+16⁢dz2⁢dz2⁢dz1⁢dz1,14⁢dz1⁢dz2⁢dz2⁢dz2+14⁢dz2⁢dz1⁢dz2⁢dz2+14⁢dz2⁢dz2⁢dz1⁢dz2+14⁢dz2⁢dz2⁢dz2⁢dz1,dz2⁢dz2⁢dz2⁢dz2
Example 1. Type I
Define a rank 4 spinor W1.
W1≔DGzip⁡6,12,30,24,6,S,plus
W1:=6⁢dz1⁢dz1⁢dz1⁢dz1+3⁢dz1⁢dz1⁢dz1⁢dz2+3⁢dz1⁢dz1⁢dz2⁢dz1+5⁢dz1⁢dz1⁢dz2⁢dz2+3⁢dz1⁢dz2⁢dz1⁢dz1+5⁢dz1⁢dz2⁢dz1⁢dz2+5⁢dz1⁢dz2⁢dz2⁢dz1+6⁢dz1⁢dz2⁢dz2⁢dz2+3⁢dz2⁢dz1⁢dz1⁢dz1+5⁢dz2⁢dz1⁢dz1⁢dz2+5⁢dz2⁢dz1⁢dz2⁢dz1+6⁢dz2⁢dz1⁢dz2⁢dz2+5⁢dz2⁢dz2⁢dz1⁢dz1+6⁢dz2⁢dz2⁢dz1⁢dz2+6⁢dz2⁢dz2⁢dz2⁢dz1+6⁢dz2⁢dz2⁢dz2⁢dz2
Calculate the Newman-Penrose coefficients for W1 with respect to the initial dyad basis dz1, dz2.
NP1≔NPCurvatureScalars⁡W1,dz1,dz2
NP1:=tablePsi2=5,Psi0=6,Psi1=−6,Psi3=−3,Psi4=6
Use these coefficients to find the Petrov type of W1.
PetrovType⁡NP1
I
Compute an adapted contravariant spinor dyad for W1 and the corresponding η, χ.
SpinorDyadCon1,η1,χ1≔AdaptedSpinorDyad⁡W1,I
SpinorDyadCon1,η1,χ1:=D_z1−D_z2,D_z2,1,4
Here is the covariant form of the spinor dyad.
Dyad1≔map⁡RaiseLowerSpinorIndices,SpinorDyadCon1,1
Dyad1:=dz1+dz2,−dz1
We check that this answer is correct in two ways. First we can re-calculate the Newman-Penrose coefficients and confirm that they are in the correct normal form.
NPCurvatureScalars⁡W1,Dyad1
tablePsi2=−1,Psi0=6,Psi1=0,Psi3=0,Psi4=6
This is the correct normal form since Ψ1= Ψ3 = 0, Ψ0 = Ψ4= 32η⋅χ = 32⋅1⋅4 = 6 and Ψ2 = 12η⋅2− χ = 12 ⋅1 ⋅−2 = −1.
Second, we can calculate a type I Weyl spinor from this spinor dyad using the command WeylSpinor and check that the result coincides with the original spinor W1.
W1Check≔WeylSpinor⁡Dyad1,I,1,4
W1Check:=6⁢dz1⁢dz1⁢dz1⁢dz1+3⁢dz1⁢dz1⁢dz1⁢dz2+3⁢dz1⁢dz1⁢dz2⁢dz1+5⁢dz1⁢dz1⁢dz2⁢dz2+3⁢dz1⁢dz2⁢dz1⁢dz1+5⁢dz1⁢dz2⁢dz1⁢dz2+5⁢dz1⁢dz2⁢dz2⁢dz1+6⁢dz1⁢dz2⁢dz2⁢dz2+3⁢dz2⁢dz1⁢dz1⁢dz1+5⁢dz2⁢dz1⁢dz1⁢dz2+5⁢dz2⁢dz1⁢dz2⁢dz1+6⁢dz2⁢dz1⁢dz2⁢dz2+5⁢dz2⁢dz2⁢dz1⁢dz1+6⁢dz2⁢dz2⁢dz1⁢dz2+6⁢dz2⁢dz2⁢dz2⁢dz1+6⁢dz2⁢dz2⁢dz2⁢dz2
W1&minusW1Check
0⁢dz1⁢dz1⁢dz1⁢dz1
Alternative dyads will be computed with the keyword argument output = all.
AdaptedSpinorDyad⁡W1,I,output=all
−D_z2,D_z1−D_z2,1,4,12+I2⁢D_z1−1+I⁢D_z2,12−I2⁢D_z1,3,−13,−12+I2⁢D_z1+I⁢D_z2,12+I2⁢D_z1−D_z2,−4,34,I2⁢2⁢D_z1,I2⁢2⁢D_z1−I⁢2⁢D_z2,4,14,−22−I⁢22⁢D_z1+22−I⁢22⁢D_z2,−12+I2⁢2⁢D_z2,−3,43,−22⁢D_z1+22−I⁢22⁢D_z2,−I2⁢2⁢D_z1−22−I⁢22⁢D_z2,−1,−3
Example 2. Type II
Define a rank 4 spinor W2.
W2≔DGzip⁡4,4,6,16,10,S,plus
W2:=4⁢dz1⁢dz1⁢dz1⁢dz1+dz1⁢dz1⁢dz1⁢dz2+dz1⁢dz1⁢dz2⁢dz1+dz1⁢dz1⁢dz2⁢dz2+dz1⁢dz2⁢dz1⁢dz1+dz1⁢dz2⁢dz1⁢dz2+dz1⁢dz2⁢dz2⁢dz1+4⁢dz1⁢dz2⁢dz2⁢dz2+dz2⁢dz1⁢dz1⁢dz1+dz2⁢dz1⁢dz1⁢dz2+dz2⁢dz1⁢dz2⁢dz1+4⁢dz2⁢dz1⁢dz2⁢dz2+dz2⁢dz2⁢dz1⁢dz1+4⁢dz2⁢dz2⁢dz1⁢dz2+4⁢dz2⁢dz2⁢dz2⁢dz1+10⁢dz2⁢dz2⁢dz2⁢dz2
Calculate the Newman-Penrose coefficients for W2 with respect to the standard dyad basis dz1, dz2.
NP2≔NPCurvatureScalars⁡W2,dz1,dz2
NP2:=tablePsi0=10,Psi1=−4,Psi3=−1,Psi4=4,Psi2=1
Find the Petrov type of W2.
PetrovType⁡NP2
II
Compute an adapted contravariant spinor dyad for W2.
SpinorDyadCon2,η2≔AdaptedSpinorDyad⁡W2,II
SpinorDyadCon2,η2:=13⁢3⁢D_z1−13⁢3⁢D_z2,−23⁢3⁢D_z1−13⁢3⁢D_z2,3
Here is the covariant form of the adapted spinor dyad.
Dyad2≔map⁡RaiseLowerSpinorIndices,SpinorDyadCon2,1
Dyad2:=13⁢3⁢dz1+13⁢3⁢dz2,13⁢3⁢dz1−23⁢3⁢dz2
NPCurvatureScalars⁡W2,Dyad2
tablePsi0=0,Psi1=0,Psi3=0,Psi4=18,Psi2=3
This is the correct normal form since Ψ0=Ψ1= Ψ3 = 0, Ψ2 = η= 3 and Ψ4 = 6⋅ η= 18.
Second, we can calculate a type II Weyl spinor from this spinor dyad and check that the result coincides with the original spinor W2.
W2Check≔WeylSpinor⁡Dyad2,II,3
W2Check:=4⁢dz1⁢dz1⁢dz1⁢dz1+dz1⁢dz1⁢dz1⁢dz2+dz1⁢dz1⁢dz2⁢dz1+dz1⁢dz1⁢dz2⁢dz2+dz1⁢dz2⁢dz1⁢dz1+dz1⁢dz2⁢dz1⁢dz2+dz1⁢dz2⁢dz2⁢dz1+4⁢dz1⁢dz2⁢dz2⁢dz2+dz2⁢dz1⁢dz1⁢dz1+dz2⁢dz1⁢dz1⁢dz2+dz2⁢dz1⁢dz2⁢dz1+4⁢dz2⁢dz1⁢dz2⁢dz2+dz2⁢dz2⁢dz1⁢dz1+4⁢dz2⁢dz2⁢dz1⁢dz2+4⁢dz2⁢dz2⁢dz2⁢dz1+10⁢dz2⁢dz2⁢dz2⁢dz2
W2&minusW2Check
Example 3. Type III
Define a rank 4 spinor W3.
W3≔DGzip⁡−8,−20⁢I,12,−4⁢I,4,S,plus
W3:=−8⁢dz1⁢dz1⁢dz1⁢dz1−I⁢dz2⁢dz1⁢dz2⁢dz2−5⁢I⁢dz1⁢dz1⁢dz1⁢dz2+2⁢dz1⁢dz1⁢dz2⁢dz2−I⁢dz1⁢dz2⁢dz2⁢dz2+2⁢dz1⁢dz2⁢dz1⁢dz2+2⁢dz1⁢dz2⁢dz2⁢dz1−I⁢dz2⁢dz2⁢dz1⁢dz2−5⁢I⁢dz1⁢dz2⁢dz1⁢dz1+2⁢dz2⁢dz1⁢dz1⁢dz2+2⁢dz2⁢dz1⁢dz2⁢dz1−5⁢I⁢dz1⁢dz1⁢dz2⁢dz1+2⁢dz2⁢dz2⁢dz1⁢dz1−I⁢dz2⁢dz2⁢dz2⁢dz1−5⁢I⁢dz2⁢dz1⁢dz1⁢dz1+4⁢dz2⁢dz2⁢dz2⁢dz2
Calculate the Newman-Penrose coefficients for W3 with respect to the initial dyad basis dz1, dz2.
NP3≔NPCurvatureScalars⁡W3,dz1,dz2
NP3:=tablePsi0=4,Psi1=I,Psi3=5⁢I,Psi4=−8,Psi2=2
Find the Petrov type of W3.
PetrovType⁡NP3
III
Compute an adapted contravariant spinor dyad for W3.
SpinorDyadCon3≔AdaptedSpinorDyad⁡W3,III
SpinorDyadCon3:=−12−12⁢I⁢6⁢D_z1+12⁢6−12⁢I⁢6⁢D_z2,−118−118⁢I⁢6⁢D_z1+−19+19⁢I⁢6⁢D_z2
Dyad3≔map⁡RaiseLowerSpinorIndices,SpinorDyadCon3,1
Dyad3:=−12⁢6+12⁢I⁢6⁢dz1+−12−12⁢I⁢6⁢dz2,19−19⁢I⁢6⁢dz1+−118−118⁢I⁢6⁢dz2
NPCurvatureScalars⁡W3,Dyad3
tablePsi0=0,Psi1=0,Psi3=1,Psi4=0,Psi2=0
This is the correct normal form since Ψ0 =Ψ1= Ψ2 = Ψ4 = 0, Ψ3= 1.
Second, we can calculate a type III Weyl spinor from this spinor dyad and check that the result coincides with the original spinor W3.
W3Check≔WeylSpinor⁡Dyad3,III
W3Check:=−8⁢dz1⁢dz1⁢dz1⁢dz1−I⁢dz2⁢dz2⁢dz2⁢dz1−5⁢I⁢dz1⁢dz1⁢dz2⁢dz1+2⁢dz1⁢dz1⁢dz2⁢dz2−I⁢dz1⁢dz2⁢dz2⁢dz2+2⁢dz1⁢dz2⁢dz1⁢dz2+2⁢dz1⁢dz2⁢dz2⁢dz1−I⁢dz2⁢dz2⁢dz1⁢dz2−5⁢I⁢dz1⁢dz2⁢dz1⁢dz1+2⁢dz2⁢dz1⁢dz1⁢dz2+2⁢dz2⁢dz1⁢dz2⁢dz1−5⁢I⁢dz1⁢dz1⁢dz1⁢dz2+2⁢dz2⁢dz2⁢dz1⁢dz1−5⁢I⁢dz2⁢dz1⁢dz1⁢dz1−I⁢dz2⁢dz1⁢dz2⁢dz2+4⁢dz2⁢dz2⁢dz2⁢dz2
W3&minusW3Check
Example 4. Type D
Define a rank 4 spinor W4.
W4≔DGzip⁡3,−18,3,72,48,S,plus
W4:=3⁢dz1⁢dz1⁢dz1⁢dz1−92⁢dz1⁢dz1⁢dz1⁢dz2−92⁢dz1⁢dz1⁢dz2⁢dz1+12⁢dz1⁢dz1⁢dz2⁢dz2−92⁢dz1⁢dz2⁢dz1⁢dz1+12⁢dz1⁢dz2⁢dz1⁢dz2+12⁢dz1⁢dz2⁢dz2⁢dz1+18⁢dz1⁢dz2⁢dz2⁢dz2−92⁢dz2⁢dz1⁢dz1⁢dz1+12⁢dz2⁢dz1⁢dz1⁢dz2+12⁢dz2⁢dz1⁢dz2⁢dz1+18⁢dz2⁢dz1⁢dz2⁢dz2+12⁢dz2⁢dz2⁢dz1⁢dz1+18⁢dz2⁢dz2⁢dz1⁢dz2+18⁢dz2⁢dz2⁢dz2⁢dz1+48⁢dz2⁢dz2⁢dz2⁢dz2
Calculate the Newman-Penrose coefficients for W4 with respect to the initial dyad basis dz1, dz2.
NP4≔NPCurvatureScalars⁡W4,dz1,dz2
NP4:=tablePsi0=48,Psi1=−18,Psi3=92,Psi4=3,Psi2=12
Find the Petrov type of W4.
PetrovType⁡NP4
D
Compute an adapted contravariant spinor dyad for W4.
SpinorDyadCon4,η4≔AdaptedSpinorDyad⁡W4,D
SpinorDyadCon4,η4:=D_z1−D_z2,45⁢D_z1+15⁢D_z2,252
Dyad4≔map⁡RaiseLowerSpinorIndices,SpinorDyadCon4,1
Dyad4:=dz1+dz2,−15⁢dz1+45⁢dz2
NPCurvatureScalars⁡W4,Dyad4
tablePsi0=0,Psi1=0,Psi3=0,Psi4=0,Psi2=252
This is the correct normal form since Ψ0 = Ψ1= Ψ3 = Ψ4 = 0, Ψ2 = η = 252.
Second, we can calculate a type D Weyl spinor from this spinor dyad and check that the result coincides with the original spinor W4.
W4Check≔WeylSpinor⁡Dyad4,D,η4
W4Check:=3⁢dz1⁢dz1⁢dz1⁢dz1−92⁢dz1⁢dz1⁢dz1⁢dz2−92⁢dz1⁢dz1⁢dz2⁢dz1+12⁢dz1⁢dz1⁢dz2⁢dz2−92⁢dz1⁢dz2⁢dz1⁢dz1+12⁢dz1⁢dz2⁢dz1⁢dz2+12⁢dz1⁢dz2⁢dz2⁢dz1+18⁢dz1⁢dz2⁢dz2⁢dz2−92⁢dz2⁢dz1⁢dz1⁢dz1+12⁢dz2⁢dz1⁢dz1⁢dz2+12⁢dz2⁢dz1⁢dz2⁢dz1+18⁢dz2⁢dz1⁢dz2⁢dz2+12⁢dz2⁢dz2⁢dz1⁢dz1+18⁢dz2⁢dz2⁢dz1⁢dz2+18⁢dz2⁢dz2⁢dz2⁢dz1+48⁢dz2⁢dz2⁢dz2⁢dz2
W4&minusW4Check
Example 5. Type N
Define a rank 4 spinor W5.
W5≔DGzip⁡1,12,54,108,81,S,plus
W5:=dz1⁢dz1⁢dz1⁢dz1+3⁢dz1⁢dz1⁢dz1⁢dz2+3⁢dz1⁢dz1⁢dz2⁢dz1+9⁢dz1⁢dz1⁢dz2⁢dz2+3⁢dz1⁢dz2⁢dz1⁢dz1+9⁢dz1⁢dz2⁢dz1⁢dz2+9⁢dz1⁢dz2⁢dz2⁢dz1+27⁢dz1⁢dz2⁢dz2⁢dz2+3⁢dz2⁢dz1⁢dz1⁢dz1+9⁢dz2⁢dz1⁢dz1⁢dz2+9⁢dz2⁢dz1⁢dz2⁢dz1+27⁢dz2⁢dz1⁢dz2⁢dz2+9⁢dz2⁢dz2⁢dz1⁢dz1+27⁢dz2⁢dz2⁢dz1⁢dz2+27⁢dz2⁢dz2⁢dz2⁢dz1+81⁢dz2⁢dz2⁢dz2⁢dz2
Calculate the Newman-Penrose coefficients for W5 with respect to the initial dyad basis dz1, dz2.
NP5≔NPCurvatureScalars⁡W5,dz1,dz2
NP5:=tablePsi0=81,Psi1=−27,Psi3=−3,Psi4=1,Psi2=9
Find the Petrov type of W5.
PetrovType⁡NP5
N
Compute an adapted contravariant spinor dyad for W5.
SpinorDyadCon5≔AdaptedSpinorDyad⁡W5,N
SpinorDyadCon5:=3⁢D_z1−D_z2,D_z1
Dyad5≔map⁡RaiseLowerSpinorIndices,SpinorDyadCon5,1
Dyad5:=dz1+3⁢dz2,dz2
NPCurvatureScalars⁡W5,Dyad5
tablePsi0=0,Psi1=0,Psi3=0,Psi4=1,Psi2=0
This is the correct normal form since Ψ0 = Ψ1= Ψ2= Ψ3 = 0, Ψ4 = 1.
Second, we can calculate a type N Weyl spinor from this spinor dyad and check that the result coincides with the original spinor W5.
W5Check≔WeylSpinor⁡Dyad5,N
W5Check:=dz1⁢dz1⁢dz1⁢dz1+3⁢dz1⁢dz1⁢dz1⁢dz2+3⁢dz1⁢dz1⁢dz2⁢dz1+9⁢dz1⁢dz1⁢dz2⁢dz2+3⁢dz1⁢dz2⁢dz1⁢dz1+9⁢dz1⁢dz2⁢dz1⁢dz2+9⁢dz1⁢dz2⁢dz2⁢dz1+27⁢dz1⁢dz2⁢dz2⁢dz2+3⁢dz2⁢dz1⁢dz1⁢dz1+9⁢dz2⁢dz1⁢dz1⁢dz2+9⁢dz2⁢dz1⁢dz2⁢dz1+27⁢dz2⁢dz1⁢dz2⁢dz2+9⁢dz2⁢dz2⁢dz1⁢dz1+27⁢dz2⁢dz2⁢dz1⁢dz2+27⁢dz2⁢dz2⁢dz2⁢dz1+81⁢dz2⁢dz2⁢dz2⁢dz2
W5&minusW5Check
See Also
DifferentialGeometry
Tensor
AdaptedNullTetrad
NPCurvatureScalars
NullVector
PetrovType
PrincipalNullDirections
WeylSpinor
Download Help Document