Tensor[BelRobinson] - calculate the Bel-Robinson tensor
Calling Sequences
BelRobinson(g, W, indexlist)
Parameters
g - a metric tensor on a 4-dimensional manifold
W - (optional) the Weyl tensor of the metric g
indexlist - (optional) the keyword argument indexlist = ind, where ind is a list of 4 index types "con" or "cov"
Description
Examples
See Also
The Bel-Robinson tensor Bijhk is a covariant rank 4 tensor defined in terms of the Weyl tensor Wijhk on a 4-dimensional manifold by (see, for example, Penrose and Rindler Vol. 1)
Bijhk=14WilhmWj k l m−12gijWlmhn+gilWmjhn+ gimWjlhnW klm n.
The Bel-Robinson tensor is totally symmetric: Bijhk=Bjihk=Bhjik=Bkjhi . The Bel-Robinson tensor is trace-free: gijBijhk=0. If gij is an Einstein metric, that is, Rij=Λgij (where Rij is the Ricci tensor for the metric gij and Λ is a constant), then the covariant divergence of Bel-Robinson vanishes: gil ∇l Bijhk=0. Here ∇l denotes the covariant derivative with respect to the Christoffel connection for gij.
The keyword argument indexlist = ind allows the user to specify the index structure for the Bel-Robinson tensor. For example, with indexlist = ["con", "con", "con", "con"], the contravariant form Bijhk is returned. The default output is the purely covariant form (as above).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BelRobinson(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-BelRobinson.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a 4-dimensional manifold M and define a metric gon M. The metric shown below is a homogenous Einstein metric (see (12.34) in Stephani, Kramer et al).
DGsetup⁡x,y,z,u,M
frame name: M
g≔evalDG⁡exp⁡z⁢dx&tdx+exp⁡−2⁢z⁢dy&tdy+dx&sdu−3Λ⁢dz&tdz
g:=ⅇz⁢dx⁢dx+ⅇ−2⁢z2⁢dx⁢du+ⅇ−2⁢z⁢dy⁢dy−3Λ⁢dz⁢dz+ⅇ−2⁢z2⁢du⁢dx
Calculate the Bel-Robinson tensor for the metric g. The result is clearly a symmetric tensor.
B≔BelRobinson⁡g
B:=Λ2⁢ⅇ2⁢z4⁢dx⁢dx⁢dx⁢dx
Use the optional keyword argument indexlist to calculate the contravariant form of the Bel-Robinson tensor.
B1≔BelRobinson⁡g,indexlist=con,con,con,con
B1:=4⁢ⅇ10⁢z⁢Λ2⁢D_u⁢D_u⁢D_u⁢D_u
The tensor B is trace-free.
h≔InverseMetric⁡g
h:=2⁢ⅇ2⁢z⁢D_x⁢D_u+ⅇ2⁢z⁢D_y⁢D_y−Λ3⁢D_z⁢D_z+2⁢ⅇ2⁢z⁢D_u⁢D_x−4⁢ⅇ5⁢z⁢D_u⁢D_u
ContractIndices⁡h,B,1,1,2,2
0⁢dx⁢dx
The covariant divergence of the tensor B1 vanishes. To check this, first calculate the Christoffel connection C for the metric g and then calculate the covariant derivative of B1.
C≔Christoffel⁡g
C:=−D_x⁢dx⁢dz−D_x⁢dz⁢dx−D_y⁢dy⁢dz−D_y⁢dz⁢dy+Λ⁢ⅇz6⁢D_z⁢dx⁢dx−Λ⁢ⅇ−2⁢z6⁢D_z⁢dx⁢du−Λ⁢ⅇ−2⁢z3⁢D_z⁢dy⁢dy−Λ⁢ⅇ−2⁢z6⁢D_z⁢du⁢dx+3⁢ⅇ3⁢z⁢D_u⁢dx⁢dz+3⁢ⅇ3⁢z⁢D_u⁢dz⁢dx−D_u⁢dz⁢du−D_u⁢du⁢dz
nablaB1≔CovariantDerivative⁡B1,C
nablaB1:=−2⁢Λ3⁢ⅇ8⁢z3⁢D_z⁢D_u⁢D_u⁢D_u⁢dx−2⁢Λ3⁢ⅇ8⁢z3⁢D_u⁢D_z⁢D_u⁢D_u⁢dx−2⁢Λ3⁢ⅇ8⁢z3⁢D_u⁢D_u⁢D_z⁢D_u⁢dx−2⁢Λ3⁢ⅇ8⁢z3⁢D_u⁢D_u⁢D_u⁢D_z⁢dx+24⁢ⅇ10⁢z⁢Λ2⁢D_u⁢D_u⁢D_u⁢D_u⁢dz
Divergence≔ContractIndices⁡nablaB1,1,5
Divergence:=0⁢D_x⁢D_x⁢D_x
The divergence of the Bel-Robinson tensor is not automatically zero; the divergence vanishes when the metric g is an Einstein metric. To check this, compute the Ricci tensor of g.
R≔RicciTensor⁡g
R:=Λ⁢ⅇz⁢dx⁢dx+Λ⁢ⅇ−2⁢z2⁢dx⁢du+Λ⁢ⅇ−2⁢z⁢dy⁢dy−3⁢dz⁢dz+Λ⁢ⅇ−2⁢z2⁢du⁢dx
evalDG⁡R−Λ⁢g
The Weyl tensor, if already calculated, can be used to quickly compute the Bel-Robinson tensor.
W≔WeylTensor⁡g
W:=−Λ⁢ⅇ−z2⁢dx⁢dy⁢dx⁢dy+Λ⁢ⅇ−z2⁢dx⁢dy⁢dy⁢dx−3⁢ⅇz2⁢dx⁢dz⁢dx⁢dz+3⁢ⅇz2⁢dx⁢dz⁢dz⁢dx+Λ⁢ⅇ−z2⁢dy⁢dx⁢dx⁢dy−Λ⁢ⅇ−z2⁢dy⁢dx⁢dy⁢dx+3⁢ⅇz2⁢dz⁢dx⁢dx⁢dz−3⁢ⅇz2⁢dz⁢dx⁢dz⁢dx
BelRobinson⁡g,W
Λ2⁢ⅇ2⁢z4⁢dx⁢dx⁢dx⁢dx
DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, CurvatureTensor, RicciTensor, WeylTensor
Download Help Document