Tensor[FormInnerProduct] - compute the inner product of two forms with respect to a given metric tensor
Calling Sequences
FormInnerProduct(g, α, β,keyword)
FormInnerProduct(g, g1, α1, β1, keyword)
Parameters
g - a covariant metric tensor on a manifold or on a Lie algebra with frame name, e.g., M
α, β - two forms (of the same degree) on M, or lists of such
α1, β1 - two forms (of the same degree) on M, or lists of such, where M is a Lie algebra with coefficients in a representation space V
g1 - a covariant metric tensor on the representation space V
keyword - the keyword argument inversemetric = h, where h is the inverse of the metric g.
Description
Examples
Let g = gij dxi dxj and let h = hij∂∂xi∂∂xj be the inverse metric. If α= ai dxi and β= bj dxj are 1-forms, then their inner product is α, β = hijai bj. For monomial p-forms α1∧α2 ∧ ... ∧ αp and β1∧β2 ∧ ... ∧ βp , the inner product is given by
α1∧α2 ∧ ... ∧ αp , β1∧β2 ∧ ... ∧ βp = detαr βs.
This formula is extended by bi-linearity to give the general formula for the inner product of a pair of p−forms.
In the special case of forms defined on a Lie algebra with coefficients x and y in a representation, the inner product formula for monomials becomes
x α1∧α2 ∧ ... ∧ αp , y β1∧β2 ∧ ... ∧ βp= gVx,y det αr βs
where x, y ϵ V and gV is the inner product on V.
with⁡DifferentialGeometry:with⁡Tensor:with⁡LieAlgebras:
First define a manifold M with local coordinates x,y,z and define a metric on M.
DGsetup⁡x,y,z,M:
g≔evalDG⁡a⁢dx&tdx+b⁢dy&tdy+c⁢dz&tdz
g:=a⁢dx⁢dx+b⁢dy⁢dy+c⁢dz⁢dz
Example 1.
Compute the inner product of two 1-forms
α1≔evalDG⁡a1⁢dx+a2⁢dy+a3⁢dz
α1:=a1⁢dx+a2⁢dy+a3⁢dz
β1≔evalDG⁡b1⁢dx+b2⁢dy+b3⁢dz
β1:=b1⁢dx+b2⁢dy+b3⁢dz
FormInnerProduct⁡g,α1,β1
a1⁢b1a+a2⁢b2b+a3⁢b3c
Example 2.
Compute the inner products of a list of monomial 2-forms.
g2≔evalDG⁡a⁢dx&tdx+b⁢dy&tdy+c⁢dz&tdz
g2:=a⁢dx⁢dx+b⁢dy⁢dy+c⁢dz⁢dz
Ω≔evalDG⁡dx&wdy,dx&wdz,dy&wdz
Ω:=dx⁢⋀⁢dy,dx⁢⋀⁢dz,dy⁢⋀⁢dz
FormInnerProduct⁡g2,Ω,Ω
Compute the inner product of a pair of 2-forms.
α2≔evalDG⁡2⁢dx&wdy+dy&wdz
α2:=2⁢dx⁢⋀⁢dy+dy⁢⋀⁢dz
β2≔evalDG⁡3⁢dx&wdz+4⁢dy&wdz
β2:=3⁢dx⁢⋀⁢dz+4⁢dy⁢⋀⁢dz
FormInnerProduct⁡g2,α2,α2
4a⁢b+1b⁢c
Example 3.
In this example we compute the inner products of forms defined on a Lie algebra with coefficients in a representation.
LD≔SimpleLieAlgebraData⁡so(4),so4
LD:=e1,e2=e4,e1,e3=e5,e1,e4=−e2,e1,e5=−e3,e2,e3=e6,e2,e4=e1,e2,e6=−e3,e3,e5=e1,e3,e6=e2,e4,e5=e6,e4,e6=−e5,e5,e6=e4
DGsetup⁡LD
Lie algebra: so4
DGsetup⁡x1,x2,x3,x4,V
frame name: V
ρ≔StandardRepresentation⁡so4,representationspace=V
ρ:=e1,0−100100000000000,e2,00−10000010000000,e3,000−1000000001000,e4,000000−1001000000,e5,0000000−100000100,e6,00000000000−10010
DGsetup⁡ρ,so4V,O,o
Lie algebra with coefficients: so4V
g≔KillingForm⁡so4V
g:=−4⁢o1⁢o1−4⁢o2⁢o2−4⁢o3⁢o3−4⁢o4⁢o4−4⁢o5⁢o5−4⁢o6⁢o6
h≔InverseMetric⁡g
h:=−14⁢O1⁢O1−14⁢O2⁢O2−14⁢O3⁢O3−14⁢O4⁢O4−14⁢O5⁢O5−14⁢O6⁢O6
gV≔evalDG⁡dx1&tdx1+dx2&tdx2+dx3&tdx3+dx4&tdx4
gV:=dx1⁢dx1+dx2⁢dx2+dx3⁢dx3+dx4⁢dx4
Compute the inner product of a pair of zero forms.
FormInnerProduct⁡g,gV,a⁢x1+b⁢x2,c⁢x1+d⁢x2
a⁢c+b⁢d
Compute the inner product of a pair of 1-forms.
FormInnerProduct⁡g,gV,x1⁢o1,x1⁢o3
0
FormInnerProduct⁡g,gV,x2⁢o1,x1⁢o1
FormInnerProduct⁡g,gV,x2⁢o2,x2⁢o2
−14
FormInnerProduct⁡g,gV,x2⁢o1&wo2,x2⁢o1&wo2
116
Compute the length of a 2-form.
α3≔evalDG⁡a⁢x2⁢o1&wo2+b⁢x4⁢o1&wo3+c⁢x⁢o2&wo5
α3:=a⁢x2⁢o1⁢⋀⁢o2+b⁢x4⁢o1⁢⋀⁢o3+c⁢x⁢o2⁢⋀⁢o5
sqrt⁡FormInnerProduct⁡g,gV,α3,α3
14⁢a2+b2
See Also
DifferentialGeometry
Tensor
ContractIndices
InverseMetric
RaiseLowerIndices
SpinorInnerProduct
TensorInnerProduct
Download Help Document