DifferentialGeometry/Tensor/NPDirectionalDerivatives - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/NPDirectionalDerivatives

Tensor[NPDirectionalDerivatives] - create procedures for the Newman-Penrose directional derivatives

Calling Sequences

     NPDirectionalDerivatives(NTetrad, output)

     NPDirectionalDerivatives(Fr, output)

Parameters

   NTetrad - a list of 4 vectors defining a null tetrad

   Fr      - the name of an initialized anholonomic frame, created from a null tetrad

   output  - (optional) keyword argument output = "sequence"

 

Description

Examples

See Also

Description

• 

Let g be a metric with signature 1,1,1,1 and L,N,M,M be a null tetrad for g. The Newman-Penrose directional derivative operators take derivatives of functions in the directions of the 4 vectors of the tetrad. See Newman and Penrose, Stewart.

• 

The NPDirectionalDerivatives command returns a table with 4 entries "D", "Delta", "delta", "barDelta" corresponding to the customary labels assigned to the NP directional derivative operators (D,Δ,δ, δ). With optional keyword argument output = "sequence", the directional derivative operators are returned as a sequence of 4 Maple procedures.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NPDirectionalDerivatives(...) only after executing the commands with(DifferentialGeometry); with(Tensor);  in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NPDirectionalDerivatives.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

Define a manifold S with coordinates t,x,y,z.

DGsetupt,x,y,z,S

frame name: S

(2.1)

 

Define a metric g of signature (1,-1,-1,-1).

S > 

gevalDGx2dt&tdty2dx&tdxz2dy&tdyt2dz&tdz

g:=x2dtdty2dxdxz2dydyt2dzdz

(2.2)

 

Define a null tetrad NTetrad for the metric g.  Use GRQuery to verify that NTetrad is a null tetrad.

S > 

NTetradevalDG12212xD_t+12212tD_z,12212xD_t12212tD_z,12212yD_x+12I212zD_y,12212yD_x12I212zD_y

NTetrad:=22xD_t+22tD_z,22xD_t22tD_z,22yD_x+I22zD_y,22yD_xI22zD_y

(2.3)
S > 

GRQueryNTetrad,g,NullTetrad

true

(2.4)

 

Calculate the NP directional derivative operators defined by the null tetrad NTetrad.  The result is a table with 4 indices.

S > 

NPDirDerNPDirectionalDerivativesNTetrad

NPDirDer:=tableDelta=f→LieDerivativeE2,f,delta=f→LieDerivativeE3,f,D=f→LieDerivativeE1,f,bardelta=f→LieDerivativeE4,f

(2.5)
S > 

indicesNPDirDer

Delta,delta,D,bardelta

(2.6)

 

The individual directional derivatives operators can be extracted from the table NPDirDer.

S > 

XNPDirDerD

X:=NPDirDerD

(2.7)
S > 

Xft,x,y,z

122tft,x,y,zx+122zft,x,y,zt

(2.8)

 

Note that this coincides with the Lie derivative of ft,x,y,z with respect to the first vector in NTetrad.

S > 

LieDerivativeNTetrad1,ft,x,y,z

122tft,x,y,zx+122zft,x,y,zt

(2.9)

 

Example 2.

With the keyword argument output = "sequence", the command NPDirectionalDerivatives will return the directional derivatives operators as a sequence. (Note that the name D is protected by Maple.)

S > 

d,Δ,δ,bardelaNPDirectionalDerivativesNTetrad,output=Sequence

d,Δ,δ,bardela:=f→DifferentialGeometry:-LieDerivativeE1,f,f→DifferentialGeometry:-LieDerivativeE2,f,f→DifferentialGeometry:-LieDerivativeE3,f,f→DifferentialGeometry:-LieDerivativeE4,f

(2.10)
S > 

Δft,x,y,z

122tft,x,y,zx122zft,x,y,zt

(2.11)

 

Example 3.

When working with the NP formalism, it is usually advantageous to work with the anholonomic frame defined by the null tetrad.  To create anholonomic frames in DifferentialGeometry, see FrameData.

S > 

FDFrameDataNTetrad,NP

FD:=E1,E2=122E1tx122E2tx,E1,E3=142E1xy+142E2xy142E3tz+142E4tz,E1,E4=142E1xy+142E2xy+142E3tz142E4tz,E2,E3=142E1xy+142E2xy+142E3tz142E4tz,E2,E4=142E1xy+142E2xy142E3tz+142E4tz,E3,E4=12I2E3zy12I2E4zy

(2.12)
S > 

DGsetupFD

frame name: NP

(2.13)

 

We can now calculate the directional derivatives operators for the null tetrad with the second calling sequence.

NP > 

NPDirectionalDerivativesNP

tableDelta=f→DifferentialGeometry:-LieDerivativeE2,f,delta=f→DifferentialGeometry:-LieDerivativeE3,f,D=f→DifferentialGeometry:-LieDerivativeE1,f,bardelta=f→DifferentialGeometry:-LieDerivativeE4,f

(2.14)

See Also

DifferentialGeometry, Tensor, LieDerivative, GRQuery, NullTetrad