DifferentialGeometry/Tensor/NPRicciBianchiIdentitiesDetails - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/NPRicciBianchiIdentitiesDetails

Details for NPRicciIdentities and NPBianchiIdentities

Description

• 

Let κ,ρ,σ,τ,π,λ,μ,ν,α,β,γ,ε be the Newman-Penrose spin coefficients. Let D,Δ,δ,δ be the Newman-Penrose directional derivatives.

• 

Here is the list of Newman-Penrose Ricci idenitites, taken from the paper of Newman and Penrose .

[a]  Dρδκ=ρ2+σσ+ε+ερ κτκ3 α+βπ+ Φ00

[b]  Dσδκ=ρ+ρσ+3 εεστ π+α+3 βκ+Ψ0

[c]  DτΔκ=τ+πρ+τ+πσ+ε ετ3 γ+γκ+Ψ1+Φ01

[d]  Dαδε=ρ+ε2 εα+βσβεκλ κγ  +ε+ϱπ+ Φ10

[e]  Dβδε=α+πσ+ρεβμ+γκαπε+Ψ1

[f]  DγΔε=τ+πα+τ+πβε+εγγ+γε+τπνκ+Ψ2Λ+Φ11

[g]  Dλδπ=ρλ+σμ+π2+α βπνκ3 ε ελ+Φ20

[h]  Dμδπ=ρμ+σλ+ππε+εμαβπνκ +Ψ2+2 Λ

[i]  DνΔπ=π+τμ+π+τλ+γγπ3 ε+εν+Ψ3+Φ21

[j]  Δλδν=μ+μλ3 γγλ+3 α+β+π τνΨ4

[k]  δρδσ=α+βρ3 α  βσ+ρ ρτ+μ μκΨ1+Φ01

[l]  δαδβ=μρλσ+αα+ββ2 αβ+ρργ+μμεΨ2+Λ+Φ11

[m]  δλδμ=ρρν+μμπ+α+βμ+α3 βλΨ3+Φ21

[n]  δνΔμ=μ2+λλ+γ+γμνπ+τ3 βαν+Φ22

[o]  δγΔβ=ταβγ+μτσνενγγμβ+αλ+Φ12

[p]  δτΔσ=μσ+λρ+τ+βατ3 γγσκν+Φ02

[q]  Δρδτ=ρμσλ+βαττ+γ+γρ+νκΨ2+2 Λ

[r]  Δαδγ=ρ+εντ+βλ+γμα+βτγΨ3

 

• 

Here the list of Newman-Penrose Bianchi idenitites, taken from the book of Stewart.

[a]  DΨ1δΨ0DΦ01+δΦ00=π4 αΨ0+22 ρ+εΨ13 κΨ2π2α2 βΦ002ρ+εΦ012 σ Φ10+2 κ Φ11+κ Φ02

[b]  ΔΨ0δΨ1+DΦ02δΦ01=4 γμΨ022 τ+βΨ1+3 σ Ψ2λΦ00+2πβΦ01+2 σ Φ11+ρ+2 ε2εΦ022 κ Φ12

[c]  DΨ2δΨ1+ΔΦ00δΦ01+2 DΛ=λΨ0+2παΨ1+3 ρΨ22 κΨ3+2 γ+2γμΦ002α+τΦ012 τ Φ10+2 ρΦ11+σΦ02

[d]  DΨ1δΨ2ΔΦ01+δΦ022 δΛ=νΨ0+2γμΨ13 τ Ψ2+2 σ Ψ3νΦ00+2μγΦ01+2 α+τ2βΦ02+2 τ Φ112 ρΦ12

[e]  DΨ3δΨ2DΦ21+δΦ202δΛ=2 λΨ1+3 π Ψ2+2 ρεΨ3κ Ψ4+2 μΦ102 πΦ112 β+π2αΦ202ρεΦ21+κΦ22

[f]  ΔΨ2δΨ3+DΦ22δΦ21+2 ΔΛ=2 νΨ13 μΨ2+2βτΨ3+σΨ42 μΦ11λΦ20+2 π Φ12+2β+πΦ21+ρ2 ε2εΦ22

[g]  DΨ4δΨ3+ΔΦ20δΦ21=3 λΨ2+2α+2 πΨ3+ρ4 εΨ4+2 ν Φ102 λΦ112 γ2γ+μΦ202ταΦ21+σΦ22

[h]  ΔΨ3δΨ4ΔΦ21+δΦ22=3 νΨ22γ+2 μΨ3+4 βτΨ42 ν Φ11νΦ20+2 λΦ12+2γ+μΦ21+τ2β2 αΦ22

[i]  DΦ11δΦ10+ΔΦ00δΦ01+3 DΛ=2 γ+2γμμΦ00+π2 α2τΦ01+π2α2 τΦ10+2ρ+ρΦ02+σΦ02+σ Φ20κΦ12κΦ21[j]  DΦ12δΦ11+ΔΦ01δΦ02+3 δΛ=2 γμ2μΦ01+νΦ00λΦ10+2πτΦ11+π+2β2 ατΦ02+2 ρ+ρ2εΦ12+σΦ21κΦ22

[k]  DΦ22δΦ21+ΔΦ11δΦ12+3 ΔΛ=νΦ01+νΦ102μ+μΦ11λΦ02λΦ20+2 πτ+2βΦ12+2 βτ+2πΦ21+ρ+ρ2 ε2εΦ22