DifferentialGeometry/Tensor/NullTetrad - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/NullTetrad

Tensor[NullTetrad] - construct a null tetrad from an orthonormal tetrad or from a solder form and a spinor basis

Tensor[OrthonormalTetrad] - construct an orthonormal tetrad from a null tetrad

Calling Sequences

     NullTetrad(OrthTetrad)

     NullTetrad(σ ,SpinBasis)

     OrthonormalTetrad(NullTetrad)

Parameters

   OrthTetrad   - a list of 4 vectors defining an orthonormal tetrad with respect to a metric g with signature 1, 1, 1, 1

   σ            - a solder form with index type ["con", " cov", "cov"]

   SpinBasis    - a list of 2 rank 1 spinors, with spinor inner product = 1

   NullTetrad   - a list of 4 vectors defining a null tetrad with respect to a Lorentzian metric g with signature 1,1,1,1 

 

Description

Examples

See Also

Description

• 

Let g be a metric on a 4-dimensional manifold with signature 1,1,1,1. A list of 4 vectors Et,Ex,Ey,Ez defines an orthonormal tetrad if

 

gEt,Et=1, gEx,Ex=gEy,Ey=gEz,Ez=1,

 

and all other inner products vanish. A list of 4 vectors L,N,M,M defines a null tetrad if L and N are real, M is the complex conjugate of M,

 

gL,N=1,  gM,M=1, 

 

and all other inner products vanish. In particular, the vectors L,N,M,M are all null vectors.

• 

Given an orthonormal tetrad OrthTetrad = Et,Ex,Ey,Ez, the command NullTetrad(OrthTetrad) constructs the null tetrad given by

 

L=12Et+Ez,  N=12Et  Ez, M=12Ex+iEy,  M=12ExiEy .

 

• 

Let sigma be a solder form (index type ["con", " cov", "cov"]), with components σAA'i ,for the metric g. Let οA and ιB be rank 1, unprimed spinors with εABοAιB=1. Let ο and ι be their conjugates (see ConjugateSpinor).  Then the following vectors

 

Li=σAA'iοA οA',   Ni=σAA'iιA ιA',   Mi=σAA'iοAιA',    M i=σAA'iιAοA'

 

 define a null tetrad. This null tetrad is computed with the second calling sequence NullTetrad(sigma, [ο, ι]).

• 

Given a null tetrad NullTetrad =[L,N,M,M], the command OrthonormalTetrad(NullTetrad) constructs the orthonormal tetrad defined by

 

Et=12L+N,  Ex=12M+M, Ey=1i2M M,  Ez=12LN

 

• 

The command DGGramSchmidt can also be used to construct an orthonormal tetrad.

• 

The command GRQuery can be used to check that a given tetrad is a null tetrad or an orthonormal tetrad.

• 

These commands are part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullTetrad(...) or OrthonormalTetrad(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. They can always be used in the long form DifferentialGeometry:-Tensor:-NullTetrad or DifferentialGeometry:-Tensor:-OrthonormalTetrad.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create manifold M with coordinates t,x,y,z.

DGsetupt,x,y,z,M

frame name: M

(2.1)

 

Define a spacetime metric g on M with signature 1,1,1,1.

M > 

gevalDGdt&tdtdx&tdxdy&tdydz&tdz

g:=dtdtdxdxdydydzdz

(2.2)

 

Define an orthonormal tetrad F on M with respect to the metric g. Verify using the command GRQuery.

M > 

FD_t,D_x,D_y,D_z

F:=D_t,D_x,D_y,D_z

(2.3)
M > 

GRQueryF,g,OrthonormalTetrad

true

(2.4)

 

Use the orthonormal tetrad F to construct a null tetrad NT.

M > 

NTNullTetradF

NT:=22D_t+22D_z,22D_t22D_z,22D_x+I22D_y,22D_xI22D_y

(2.5)

 

Verify this result using the command GRQuery.

M > 

GRQueryNT,g,NullTetrad

true

(2.6)

 

It is a simple matter to check directly, using the TensorInnerProduct command, that NT is a null tetrad,

M > 

TensorInnerProductg,NT,NT

 

Example 2.

We use spinors to create a null tetrad. First create a vector bundle EM with base coordinates t,x,y,z and fiber coordinates z1, z2, w1, w2.

DGsetupt,x,y,z,z1,z2,w1,w2,E

frame name: E

(2.7)

 

Define a spacetime metric g2 on M with signature 1,1,1,1.

E > 

g2evalDGdt&tdtdx&tdxdy&tdydz&tdz

g2:=dtdtdxdxdydydzdz

(2.8)

 

Define an orthonormal frame F2 on M with respect to the metric g2.

E > 

F2D_t,D_x,D_y,D_z

F2:=D_t,D_x,D_y,D_z

(2.9)

 

Compute the solder form σ defined by the orthonormal frame F2.

E > 

σSolderFormF2,indextype=con,cov,cov

σ:=22D_tdz1dw1+22D_tdz2dw2+22D_xdz1dw2+22D_xdz2dw1+I22D_ydz1dw2I22D_ydz2dw1+22D_zdz1dw122D_zdz2dw2

(2.10)

 

Define a pair of rank 1 spinors ο and ι. Check that their spinor inner product is 1. Construct the corresponding null tetrad, N2.

E > 

οevalDGD_z1+2D_z2

ο:=D_z1+2D_z2

(2.11)
E > 

ιevalDG2D_z1+5D_z2

ι:=2D_z1+5D_z2

(2.12)
E > 

SpinorInnerProductο,ι

1

(2.13)
E > 

N2NullTetradσ,ο,ι

N2:=522D_t+22D_x322D_z,2922D_t+102D_x2122D_z,62D_t+922D_x+I22D_y42D_z,62D_t+922D_xI22D_y42D_z

(2.14)
E > 

TensorInnerProductg2,N2,N2

 

Example 3.

Convert the null tetrad N2 constructed in Example 2 to an orthonormal tetrad T.

E > 

TOrthonormalTetradN2

T:=17D_t+12D_x12D_z,12D_t+9D_x8D_z,D_y,12D_t8D_x+9D_z

(2.15)

 

Check the result.

E > 

TensorInnerProductg2,T,T

See Also

DifferentialGeometry, Tensor, ConjugateSpinor, DGGramSchmidt, GRQuery, SolderForm, SpinorInnerProduct, TensorInnerProduct