Tensor[NullTetradTransformation] - apply a Lorentz transformation to a null tetrad
Calling Sequences
NullTetradTransformation(NullTetrad, TransType, θ, axis)
Parameters
NullTetrad - a list of 4 vectors defining a null tetrad
TransType - a string, "null rotation", "spatial rotation", or "boost", describing the transformation type
θ - the transformation parameter
axis -(optional) a string, specifies the axis of rotation as "l"(or "L") or "m"(or"M") in the case where TransType = "null rotation"
Description
Examples
See Also
Let g be a metric on a 4-dimensional manifold with signature 1,−1,−1,−1. A list of 4 vectors L,N,M,M‾ defines a null tetrad if L and N are real, M‾ is the complex conjugate of M,
gL,N=1, gM,M‾=−1,
and all other inner products vanish. In particular, the vectors L,N,M,M‾ are all null vectors.
A Lorentz transformation is a (linear) change of frame which transforms a null tetrad L,N,M,M‾ into another null tetrad L',N',M',M‾'. Every Lorentz transformation can be expressed as the composition of the following 4 basic Lorentz transformations.
1. A null rotation about the L axis (θ complex):
L'=L, N'=N+θ M+θ‾ M‾+θθ‾L, M'=M+θ‾L, M‾'=M‾+θL.
2. A null rotation about the N axis (θ complex)
L'=L+ θ M +θ‾M‾+θθ‾N, N'=N, M'=M+θ‾L, M‾'=M‾+θN.
3. A spatial rotation in the M−M‾ plane (θ real):
L'=L, N'=N, M'=eiθM, M‾'=e−iθ M‾.
4. A boost (θ real and non-zero):
L'=θL, N'=1θN, M'=M, M‾'=M.‾
The command NullTetradTransformation(NullTetrad, TransType, θ, axis) returns the new null tetrad [L', N', M', M‾'] obtained from NullTetrad = [L, N, M, M‾] through the application of one of the above Lorentz transformations.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullTetradTransformation(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NullTetradTransformation.
with⁡DifferentialGeometry:with⁡Tensor:
For the first 4 examples we work with coordinates u,v,x,y and an off-diagonal form for the metric. This is the easiest setting to see the effects the 4 basic Lorentz transformations. Here we define the metric and a null tetrad.
DGsetup⁡u,v,x,y,S
frame name: S
g≔evalDG⁡2⁢du&sdv−12⁢dx&tdx+dy&tdy
g:=du⁢dv+dv⁢du−12⁢dx⁢dx−12⁢dy⁢dy
L,N,M,barM≔D_u,D_v,evalDG⁡D_x+I⁢D_y,evalDG⁡D_x−I⁢D_y
L,N,M,barM:=D_u,D_v,D_x+I⁢D_y,D_x−I⁢D_y
T≔L,N,M,barM
T:=D_u,D_v,D_x+I⁢D_y,D_x−I⁢D_y
GRQuery⁡T,g,NullTetrad
true
Example 1.
Apply a null rotation to the null tetrad T about the "l" axis. Check that the result is a null tetrad.
T1a≔NullTetradTransformation⁡T,null rotation,a,lassuminga::real
T1a:=D_u,a2⁢D_u+D_v+2⁢a⁢D_x,a⁢D_u+D_x+I⁢D_y,a⁢D_u+D_x−I⁢D_y
GRQuery⁡T1a,g,NullTetrad
T1b≔NullTetradTransformation⁡T,null rotation,I⁢b,lassumingb::real
T1b:=D_u,b2⁢D_u+D_v−2⁢b⁢D_y,−I⁢b⁢D_u+D_x+I⁢D_y,I⁢b⁢D_u+D_x−I⁢D_y
GRQuery⁡T1b,g,NullTetrad
Example 2.
Apply a null rotation about the "n" axis to the null tetrad T. Check that the result is a null tetrad.
T2a≔NullTetradTransformation⁡T,null rotation,a,nassuminga::real
T2a:=D_u+a2⁢D_v+2⁢a⁢D_x,D_v,a⁢D_v+D_x+I⁢D_y,a⁢D_v+D_x−I⁢D_y
GRQuery⁡T2a,g,NullTetrad
T2b≔NullTetradTransformation⁡T,null rotation,I⁢b,nassumingb::real
T2b:=D_u+b2⁢D_v−2⁢b⁢D_y,D_v,−I⁢b⁢D_v+D_x+I⁢D_y,I⁢b⁢D_v+D_x−I⁢D_y
GRQuery⁡T2b,g,NullTetrad
Example 3.
Apply a spatial rotation to the null tetrad T. Check that the result is a null tetrad.
T3≔NullTetradTransformation⁡T,spatial rotation,θ,nassumingθ::real
T3:=D_u,D_v,cos⁡θ+I⁢sin⁡θ⁢D_x+I⁢cos⁡θ−sin⁡θ⁢D_y,cos⁡θ−I⁢sin⁡θ⁢D_x−I⁢cos⁡θ+sin⁡θ⁢D_y
GRQuery⁡T3,g,NullTetrad
Example 4.
Apply a boost to the null tetrad T. Check that the result is a null tetrad.
T4≔NullTetradTransformation⁡T,spatial rotation,θ,nassumingθ::real
T4:=D_u,D_v,cos⁡θ+I⁢sin⁡θ⁢D_x+I⁢cos⁡θ−sin⁡θ⁢D_y,cos⁡θ−I⁢sin⁡θ⁢D_x−I⁢cos⁡θ+sin⁡θ⁢D_y
GRQuery⁡T4,g,NullTetrad
Example 5.
In this example we show how the use of a null tetrad transformation can be use to simplify the NP Weyl scalars. First we define our manifold.
DGsetup⁡t,x,y,z,S
Define a null tetrad T1. (By decreeing this to be a null tetrad we implicitly define the spacetime metric.)
T1≔evalDG⁡12⁢212⁢D_t+12⁢212⁢D_z,12⁢212⁢D_t−12⁢212⁢D_z,12⁢212⁢z2⁢D_x+12⁢I⁢212⁢x2⁢D_y,12⁢212⁢z2⁢D_x−12⁢I⁢212⁢x2⁢D_y
T1:=12⁢2⁢D_t+12⁢2⁢D_z,12⁢2⁢D_t−12⁢2⁢D_z,12⁢2⁢z2⁢D_x+12⁢I⁢2⁢x2⁢D_y,12⁢2⁢z2⁢D_x−12⁢I⁢2⁢x2⁢D_y
Apply a null rotation with parameter θ=a to T1.
T2≔NullTetradTransformation⁡T1,null rotation,a,lassuminga::real
T2:=12⁢2⁢D_t+12⁢2⁢D_z,12⁢a2⁢2+12⁢2⁢D_t+a⁢2⁢z2⁢D_x+12⁢a2⁢2−12⁢2⁢D_z,12⁢a⁢2⁢D_t+12⁢2⁢z2⁢D_x+12⁢I⁢2⁢x2⁢D_y+12⁢a⁢2⁢D_z,12⁢a⁢2⁢D_t+12⁢2⁢z2⁢D_x−12⁢I⁢2⁢x2⁢D_y+12⁢a⁢2⁢D_z
Calculate the NP Weyl scalars for the null tetrad T2.
NPCurvatureScalars⁡T2,output=WeylScalars
tablePsi3=−12⁢6⁢z3⁢a2⁢x−2⁢z3⁢x−6⁢z6⁢a+3⁢a3⁢x2+3⁢a⁢x2z2⁢x2,Psi1=−12⁢2⁢z3+3⁢a⁢xz2⁢x,Psi2=−12⁢−2⁢z6+x2+3⁢a2⁢x2+4⁢x⁢a⁢z3z2⁢x2,Psi0=−32⁢z2,Psi4=−12⁢8⁢x⁢a3⁢z3−8⁢x⁢a⁢z3+3⁢a4⁢x2+6⁢a2⁢x2−12⁢a2⁢z6+3⁢x2z2⁢x2
We can make Psi1 = 0 by choosing a=−23 xz3.
T3≔eval⁡T2,a=−23⁢z3x
T3:=12⁢2⁢D_t+12⁢2⁢D_z,29⁢z6⁢2x2+12⁢2⁢D_t−23⁢z5⁢2⁢D_xx+29⁢z6⁢2x2−12⁢2⁢D_z,−13⁢z3⁢2⁢D_tx+12⁢2⁢z2⁢D_x+12⁢I⁢2⁢x2⁢D_y−13⁢z3⁢2⁢D_zx,−13⁢z3⁢2⁢D_tx+12⁢2⁢z2⁢D_x−12⁢I⁢2⁢x2⁢D_y−13⁢z3⁢2⁢D_zx
Recalculate the NP Weyl scalars and note that Psi1 = 0.
NPCurvatureScalars⁡T3,output=WeylScalars
tablePsi3=29⁢z⁢−13⁢z6+9⁢x2x3,Psi1=0,Psi2=−16⁢−10⁢z6+3⁢x2z2⁢x2,Psi0=−32⁢z2,Psi4=−118⁢−64⁢z12+72⁢z6⁢x2+27⁢x4z2⁢x4
DifferentialGeometry, Tensor, DGGramSchmidt, GRQuery, NullTetrad, OrthonormalTetrad, NPCurvatureScalars
Download Help Document