Details for PetrovType
Description
The command PetrovType uses the algorithm of M. A. Acvevedo, M. M. Enciso-Aguilar, J. Lopez-Bonilla, M. A. Acvevedo, Petrov classification of the conformal tensor, Electronic Journal of Theoretical Physics, Vol. 9, (2006), 79-82 to determine the Petrov type. The algorithm depends upon certain invariants calculated from the Newman Penrose Weyl scalars Ψ0,Ψ1,Ψ2,Ψ3,Ψ4. These invariants are:
G0=2Ψ0Ψ2−Ψ12
G1=2Ψ0Ψ3−Ψ1Ψ2
G2=Ψ02+Ψ0Ψ4−2 Ψ1Ψ3
G3=Ψ1Ψ4−Ψ2Ψ3
G4=2Ψ2Ψ4−Ψ32
G5=2Ψ1Ψ3−Ψ22
I=G2−G5
J=−Ψ3G1+12Ψ2G5+Ψ4G0
If I3=27 J2 then λ is determined by λ2=13I and λ3=−J and
Mr=Gr+λΨr , r=0,1,2,3,4
L=G2+2 G5+3 λΨ2
The algorithm is as follows:
Step 1. If Ψ0=Ψ1=Ψ2=Ψ3=Ψ4=0, then the Petrov type is O.
Step 2. Otherwise, if G0=G1=G2=G3=G4=0, then the Petrov type is N.
Step 3. Otherwise, if I=J=0, then the Petrov type is III.
Step 4. Otherwise, if I3≠27 J2, then the Petrov type is I.
Step 5. If I3=27 J2 and Mr=0 for r=0,1,2,3,4 and G2+2 G5+3 λΨ2=0, then the Petrov type is D.
Step 6. Otherwise, the Petrov type is II.
Download Help Document