RainichConditions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[RainichConditions] - check that a metric tensor satisfies the Rainich conditions

Calling Sequences

   RainichConditions(g, option)

   RainichConditions(g, R, CR, α, option)

Parameters

   g      - a metric tensor on a 4dimensional manifold

   R      - the Ricci tensor of g

   CR     -  a rank 3 tensor, the covariant derivative of the Ricci tensor

   alpha  - (optional) an unevaluated name

   option - the keyword argument output = "tensor"

 

Description

 Examples

Description

• 

Let g be a space-time metric on a 4-dimensional manifold. The Rainich conditions are necessary and locally sufficient conditions for there to exist a non-null electromagnetic field(a non-null 2-form satisfying the source-free Maxwell equations) such that the Einstein equations Gii= Tij hold. Here Gii =Rij 12gijR is the Einstein tensor and Tij is the electromagnetic energy-momentum tensor. The Rainich conditions apply only to those metrics g for which the Ricci tensor is non-null, that is, N= RijRij 0. There are 2 algebraic Rainich conditions and 1 differential condition

C1: Rh iRjh  14 δji Rhk Rhk  =0,       C2: Ri i = 0,      C3: dα = 0, where αi = ϵijhk Rm jRmk;h /N.

Space-times which satisfy these Rainich conditions are called electro-vac space-times. If the Rainich conditions hold, then an electromagnetic field which solves the Einstein-Maxwell equations can be found. See RainichElectromagneticField.

• 

The command RainichConditions returns true or false. With output = "tensor", the 3 tensors defined by the left-hand sides of the equations C1, C2, C3 are returned. If the argument alpha is present, then the value of the 1-form in C3 is assigned to alpha.

• 

For subsequent computations with RainichElectromagneticField it is more efficient to first calculate/simplify the Ricci tensor and its covariant derivative and then to use the second calling sequence.

 Examples

 

with(DifferentialGeometry): with(Tensor):

 

Example 1.

We define a space-time metric g and check that the Rainich conditions hold.

 

M > 

DGsetup([t, x, y, z], M):

M > 

g := evalDG(4/3*t^2* dx &t dx + t*(exp(-2*x)* dy &t dy + exp(2*x)*dz &t dz) - dt &t dt);

g:=dtdt+43t2dxdx+tⅇ2xdydy+tⅇ2xdzdz

(2.1)

 

1. First calling sequence.

M > 

RainichConditions(g);

true

(2.2)

 

2. To use the 2nd calling sequence first calculate the Ricci tensor and its covariant derivative.

R := RicciTensor(g);

R:=12dtdtt223dxdx+12ⅇ2xdydyt+12ⅇ2xdzdzt

(2.3)
M > 

C := Christoffel(g);

C:=dtD_xdxt+12dtD_ydyt+12dtD_zdzt+43tdxD_tdx+dxD_xdttdxD_ydy+dxD_zdz+12ⅇ2xdyD_tdy+34ⅇ2xdyD_xdyt+12dyD_ydttdyD_ydx+12ⅇ2xdzD_tdz34ⅇ2xdzD_xdzt+12dzD_zdtt+dzD_zdx

(2.4)
M > 

CR := CovariantDerivative(R, C);

CR:=dtdtdtt312ⅇ2xdtdydyt212ⅇ2xdtdzdzt2+43dxdxdtt+ⅇ2xdxdydytⅇ2xdxdzdzt12ⅇ2xdydtdyt2+ⅇ2xdydxdytⅇ2xdydydtt212ⅇ2xdzdtdzt2ⅇ2xdzdxdztⅇ2xdzdzdtt2

(2.5)
M > 

RainichConditions(g, R, CR);

true

(2.6)

 

3. Let's see the value of the 1-form α equation C3.

M > 

RainichConditions(g, R, CR, 'alpha');

true

(2.7)
M > 

alpha;

0dt

(2.8)

 

Example 2

We consider a metric depending upon 2 arbitrary functions and determine those functions for which the Rainich conditions hold.

M > 

DGsetup([t, x, y, z], M):

M > 

g := (1/x^2) &mult evalDG(A(x)*dx &t dx + B(x)*dy &t dy + 1/z^2*dz &t dz - z^2*dt &t dt);

g:=z2dtdtx2+Axdxdxx2+Bxdydyx2+dzdzx2z2

(2.9)

 

Here are the Rainich conditions. The first condition is too complicated to display here, but the 2nd and 3rd are simple.

M > 

C1, C2, C3 := RainichConditions(g, output = "tensor"):

M > 

C2, C3;

1224AxBx2+4x2Ax2Bx26xBxAxⅆⅆxBx+6xⅆⅆxAxBx2ⅆⅆxBx2x2AxⅆⅆxBxx2ⅆⅆxAxBx+2Bxx2Axⅆ2ⅆx2BxAx2Bx2,0dtdx

(2.10)

 

To impose the Rainich conditions, we set the coefficients of the tensors C1 and C2 to zero. The command DGinfo/"CoefficientSet" gives us these coefficients. Again, they are too long to display here.

M > 

Eq := Tools:-DGinfo(C1, "CoefficientSet") union Tools:-DGinfo(C2, "CoefficientSet"):

 

We see that there are a total of 5 scalar conditions on Ax, t.

M > 

nops(Eq);

5

(2.11)

 

Here is one of the Rainich conditions.

M > 

Eq[1];

1224AxBx2+4x2Ax2Bx26xBxAxⅆⅆxBx+6xⅆⅆxAxBx2ⅆⅆxBx2x2AxⅆⅆxBxx2ⅆⅆxAxBx+2Bxx2Axⅆ2ⅆx2BxAx2Bx2

(2.12)

 

We use pdsolve to solve all the Rainich conditions.

M > 

solution := pdsolve(Eq);

solution:=Ax=_C1x2_C1+_C2x+_C3x2,Bx=_C1x2+_C2x3+_C3x4

(2.13)

For these values of A, B the metric g defines an electro-vac space-time.

 

See Also

DifferentialGeometry

CovariantDerivative

DGinfo

EinsteinTensor

EnergyMomentumTensor

RainichElectromageticField

RicciTensor

Tensor