Details for SegreType
Description
The command SegreType uses the algorithm of E. Zakhary and J. Carminati, A New Algorithm for the Segre Classification of the Trace-Free Ricci Tensor, General Relativity and Gravitation,Vol 36, (2004), 1015-1038 to determine the Segre type. The algorithm first calculates the Plebanski-Petrov type and then the Segre type.
If the Plebanski-Petrov type of the Ricci tensor R is O, then the Segre type of R is [(1,111)], [1,(111)], [(1,11),1], or [(2,11)].
If the Plebanski-Petrov type of the Ricci tensor R is N, then the Segre type of R is [(2,1)1] or [(3,1)].
If the Plebanski-Petrov type of the Ricci tensor R is D, then the Segre type of R is [(1,1)(11)], [1,1(11)], [(1,1)11], [2,(11)], or [Z‾Z,(11)].
If the Plebanski-Petrov type of the Ricci tensor R is III, then the Segre type of R is [3,1].
If the Plebanski-Petrov type of the Ricci tensor R is II, then the Segre type of R is [2,11].
If the Plebanski-Petrov type of the Ricci tensor R is I, then the Segre type of R is [1,111] or [Z‾Z11].
The algorithm depends upon certain invariants calculated from the Newman-Penrose Ricci scalars Φ00,Φ01,Φ02,Φ10,Φ11,Φ20,Φ21,Φ22. These invariants are:
χ0=2 Φ00Φ02−Φ012
χ1=Φ00Φ12+Φ02Φ10−2 Φ01Φ11
χ2=13Φ00Φ22−2 Φ01Φ21+Φ02Φ20+4 Φ10Φ12−4 Φ112
χ3=Φ10Φ22−2 Φ11Φ21+Φ12Φ20
χ4=2Φ20Φ22−Φ212
E00=4Φ00Φ11−Φ01Φ10
E01=2Φ00Φ12−Φ02Φ10
E02=4Φ01Φ12−Φ02Φ11
E10=2Φ00Φ21−Φ20Φ01
E11= Φ00Φ22−Φ02Φ20
E12=2Φ01Φ22−Φ02Φ21
E20=4Φ01Φ21−Φ20Φ11
E21=2Φ10Φ22−Φ20Φ12
E22=4Φ11Φ22−Φ12Φ21
ΔΦ=Φ112−Φ01Φ21
r1=2χ2−2 Φ10Φ12+2 Φ112
χ'0=2E00E02−E012 χ'1=E00E12+E__02E__10−2 E__01E__11
χ'2=13E00E22−2E01E21+E02E20+4E10E12−4E112 χ'3=E00E22−2 E__11E__21+ E__12E__20 χ'4=2E20E22−E212
Ip=13χ0χ4−4 χ1χ3+3 χ22 r__3=r__12−I__p
Jp=χ0χ2χ4+2 χ1χ2χ3−χ0χ32−χ12χ4−χ23
H=r1Ip−Jp
r2=2Φ00Φ11Φ22+Φ01Φ12Φ20+Φ02Φ10Φ21−Φ00Φ12Φ21−Φ01Φ10Φ22−Φ02Φ11Φ20 ki=JpEii−2 r2IpΦiiH,ii=0, 1, 2; no summing
Dp=Jp2−Ip3
Here are the details of the algorithm.
A. The Plebanski-Petrov type of the Ricci tensor R is O.
Step A1. If all the Ricci scalars Φ00=Φ01= ... = Φ22=0, then the Segre type S = [(1,111)].
Step A2. Otherwise, if ΔΦ=0, then S = [(2,11)].
Step A3. Otherwise, if E00>0, then S = [1,(111)].
Step A4. Otherwise, if E00≤0, then S = [(1,11)1].
B. The Plebanski-Petrov type of the Ricci tensor R is N.
Step B1. If r1=0, then S = [(3,1)], otherwise S = [(2,1)1].
C. The Plebanski-Petrov type of the Ricci tensor R is D.
Step C1. If r1=0, then S=ZZ&conjugate0;11.
Step C2. If r1≠0 and all the E00=E01= ... =E22=0, then S = [(1,1)(11)].
Step C3. If r1≠0, χ__0≠0 and χ'0=0, then S = [(2,11)].
Step C4. If r1≠0, χ0=0 and χ'2=0, then S = [2,(11)].
Step C5. If H=0, then S = [2,(11)], while if H<0, then S=ZZ&conjugate0;11.
D. The Plebanski-Petrov type of the Ricci tensor R is III.
Step D1. The Segre type of R is [3,1].
E. The Plebanski-Petrov type of the Ricci tensor R tensor is II.
Step E1. Then Segre type of R is [2, 11].
F. The Plebanski-Petrov type of the Ricci tensor R tensor is I.
Step F1. If Dp<0, then S =[1,111] while if Dp>0, then S = [Z‾Z11].
Download Help Document