GaussInt
GImod
Gaussian integer modular arithmetic
Calling Sequence
Parameters
Description
Examples
GImod(a, m)
a
-
Gaussian integer or polynomial with Gaussian integer coefficients, or a set or list of these
m
Gaussian integer
GImod(a, m), where a is a Gaussian integer, computes the Gaussian integer remainder of a divided by m.
GImod(a, m), where a is a polynomial with Gaussian integer coefficients, reduces the coefficients mod m.
To compute GImod(a^n, m), where a is a Gaussian integer and n is a positive integer, without first computing a^n, use the inert powering operator, &^: GImod(a &^ n, m).
To compute GImod(a^(-1), m), where a is a Gaussian integer, use the form GImod(inv(a), m).
GImod(a, m) = GImod~(a, m) if a is a set or list, where ~ is the elementwise operator.
with⁡GaussInt:
GImod⁡17+32⁢I,5+4⁢I
2⁢I
GImod⁡12+13⁢I⁢z2−27−22⁢I⁢z+17+14⁢I,3+4⁢I
−3⁢I⁢z2+1+I⁢z+1+I
GImod⁡17+32⁢I&ˆ12345,5+5⁢I
−3+2⁢I
GImod⁡inv⁡17+32⁢I,5+5⁢I
−1−4⁢I
GImod⁡17+32⁢I,inv⁡17+32⁢I,3+7⁢I
−1+2⁢I,2−3⁢I
See Also
GaussInt,GIquo
GaussInt,GIrem
mod
syntax
Download Help Document