GraphTheory[SpecialGraphs]
FlowerSnark
construct flower snark graph
GoldbergSnark
construct Goldberg snark graph
Calling Sequence
Parameters
Description
Examples
FlowerSnark(K)
GoldbergSnark(K)
K
-
odd positive integer
A snark is a nontrivial cubic graph with chromatic index 4.
The FlowerSnark command creates the flower snark graphs, also known as Isaac's snarks. A flower snark with parameter K, is a 3-regular graph on 4*K vertices. The GoldbergSnark(K) command creates the Goldberg snark with parameter K. A Goldberg snark with parameter K, is a 3-regular graph on 8*K vertices.
with⁡GraphTheory:with⁡SpecialGraphs:
F≔FlowerSnark⁡5
F≔Graph 1: an undirected graph with 20 vertices and 30 edge(s)
IsRegular⁡F
true
DrawGraph⁡F
ChromaticIndex⁡F
4
CircularChromaticNumber⁡F
52
H≔GoldbergSnark⁡5
H≔Graph 2: an undirected graph with 40 vertices and 60 edge(s)
DrawGraph⁡H
See Also
DoubleStarSnark
GeneralizedBlanusaSnark
SpecialGraphs
SzekeresSnark
WatkinsSnark
Download Help Document