GroupTheory
HamiltonianGroup
construct a finite Hamiltonian group
NumHamiltonianGroups
find the number of Hamiltonian groups of a given order
AllHamiltonianGroups
find all Hamiltonian groups of a given order
Calling Sequence
Parameters
Options
Description
Examples
Compatibility
HamiltonianGroup( n, k )
NumHamiltonianGroups( n )
AllHamiltonianGroups( n )
n
-
a positive integer
k
formopt : option of the form form = "permgroup" or form = "fpgroup"
outopt : option of the form output = "list" or output = "iterator"
A group is Hamiltonian if it is non-Abelian, and if every subgroup is normal. Every Hamiltonian group has the quaternion group as a direct factor, so the order of every finite Hamiltonian group is a multiple of 8.
For a positive integer n, the NumHamiltonianGroups( n ) command returns the number of Hamiltonian groups of order n. (This is 0 if n is not a multiple of 8.)
The HamiltonianGroup( n, k ) command returns the k-th Hamiltonian group of order n. An exception is raised if n is not a multiple of 8.
The AllHamiltonianGroups( n ) command returns an expression sequence of all the Hamiltonian groups of order n, where n is a positive integer. Note that NULL is returned if n is not a multiple of 8.
The HamiltonianGroup and AllHamiltonianGroups commands accept an option of the form form = F, where F may be either of the strings "permgroup" (the default), or "fpgroup".
The AllHamiltonianGroups command accepts an option of the form output = "list" (the default) or output = "iterator". By default, a sequence of the Hamiltonian groups of order n is returned. If you pass the option output = "iterator" to AllHamiltonianGroups, then an iterator object is returned instead.
with⁡GroupTheory:
There is an unique Hamiltonian group of each 2-power greater than or equal to 8.
seq⁡NumHamiltonianGroups⁡2i,i=1..20
0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
There are no Hamiltonian groups of order 25.
NumHamiltonianGroups⁡25
0
NumHamiltonianGroups⁡432
3
G≔HamiltonianGroup⁡432,2
G≔1,2,3,45,6,8,7,1,5,3,82,7,4,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22
IsHamiltonian⁡G
true
AllHamiltonianGroups⁡432,form=fpgroup
⁢_x3,_x4,_x5,_x6,_x7,_x8⁢∣⁢_x52,_x63,_x73,_x83,_x34,_x32⁢_x42,_x3⁢_x4⁢_x3-1⁢_x4,_x5-1⁢_x3-1⁢_x5⁢_x3,_x5-1⁢_x4-1⁢_x5⁢_x4,_x6-1⁢_x3-1⁢_x6⁢_x3,_x6-1⁢_x4-1⁢_x6⁢_x4,_x6-1⁢_x5-1⁢_x6⁢_x5,_x7-1⁢_x3-1⁢_x7⁢_x3,_x7-1⁢_x4-1⁢_x7⁢_x4,_x7-1⁢_x5-1⁢_x7⁢_x5,_x7-1⁢_x6-1⁢_x7⁢_x6,_x8-1⁢_x3-1⁢_x8⁢_x3,_x8-1⁢_x4-1⁢_x8⁢_x4,_x8-1⁢_x5-1⁢_x8⁢_x5,_x8-1⁢_x6-1⁢_x8⁢_x6,_x8-1⁢_x7-1⁢_x8⁢_x7⁢,⁢_x12,_x13,_x14,_x15,_x16⁢∣⁢_x142,_x153,_x124,_x122⁢_x132,_x12⁢_x13⁢_x12-1⁢_x13,_x14-1⁢_x12-1⁢_x14⁢_x12,_x14-1⁢_x13-1⁢_x14⁢_x13,_x15-1⁢_x12-1⁢_x15⁢_x12,_x15-1⁢_x13-1⁢_x15⁢_x13,_x15-1⁢_x14-1⁢_x15⁢_x14,_x16-1⁢_x12-1⁢_x16⁢_x12,_x16-1⁢_x13-1⁢_x16⁢_x13,_x16-1⁢_x14-1⁢_x16⁢_x14,_x16-1⁢_x15-1⁢_x16⁢_x15,_x169⁢,⁢_x20,_x21,_x22,_x23⁢∣⁢_x222,_x204,_x202⁢_x212,_x20⁢_x21⁢_x20-1⁢_x21,_x22-1⁢_x20-1⁢_x22⁢_x20,_x22-1⁢_x21-1⁢_x22⁢_x21,_x23-1⁢_x20-1⁢_x23⁢_x20,_x23-1⁢_x21-1⁢_x23⁢_x21,_x23-1⁢_x22-1⁢_x23⁢_x22,_x2327⁢
it≔AllHamiltonianGroups⁡194400000,output=iterator
it≔⟨Hamiltonian Groups Iterator for Order 194400000⟩
nops⁡seq⁡it
49
The GroupTheory[HamiltonianGroup], GroupTheory[NumHamiltonianGroups] and GroupTheory[AllHamiltonianGroups] commands were introduced in Maple 2019.
For more information on Maple 2019 changes, see Updates in Maple 2019.
See Also
GroupTheory[IsHamiltonian]
GroupTheory[NumGroups]
Download Help Document