IsElementary - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

IsElementary

  

attempt to determine whether a group is elementary Abelian

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

IsElementary( G )

Parameters

G

-

a finite group

Description

• 

A group G is elementary if it is a finite Abelian group with prime exponent. Equivalently, G is elementary if it is a direct sum (product) of groups each of order equal to a fixed prime p.

• 

The IsElementary( G ) command attempts to determine whether the group G is elementary.  It returns true if G is elementary and returns false otherwise.

• 

The group G must be an instance of a permutation group, a Cayley table group or a finite, finitely presented group.

Examples

withGroupTheory:

GSmallGroup32,1:

IsElementaryG

false

(1)

GSmallGroup17,1:

IsElementaryG

true

(2)

IsElementaryDirectProduct`$`CyclicGroup2,5

true

(3)

IsElementaryWreathProduct`$`CyclicGroup2,5

false

(4)

GCayleyTableGroup1|2|3|4,2|1|4|3,3|4|1|2,4|3|2|1

G < a Cayley table group with 4 elements >

(5)

IsElementaryG

true

(6)

GCayleyTableGroup1|2|3|4|5|6&comma;2|1|4|3|6|5&comma;3|5|1|6|2|4&comma;4|6|2|5|1|3&comma;5|3|6|1|4|2&comma;6|4|5|2|3|1

G < a Cayley table group with 6 elements >

(7)

IsElementaryG

false

(8)

IsElementarya&comma;b&comma;c|a5&comma;b5&comma;c5&comma;a·b=b·a&comma;a·c=c·a&comma;b·c=c·b

true

(9)

Compatibility

• 

The GroupTheory[IsElementary] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[IsAbelian]