Heat Convection - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Heat Convection

Basic component of Convection

 

Description

Equations

Variables

Connections

Parameters

See Also

Description

The Heat Convection component models the heat convection phenomenon, which is based on Newton's law of cooling.

The Convection type parameter selects the type of convection to use for this component. There are four options to select from: Constant, External input, Natural, and Forced.

Additionally, there are several built-in functions for Forced convection and Natural convection as references.

Refer to the following table for the implemented convection types.

 

Convection type

Use reference

for Natural / Forced

Natural / Forced convection type

Use Correction input

Natural

false

-

false or true

true

Vertical (Ra:10^4-10^13)

false or true

Horizontal Upper Warm(Ra:10^4-10^11)

false or true

Horizontal Upper Cold (Ra:10^5-10^11)

false or true

Forced

false

-

false or true

true

Tube and Duct

false or true

Over flat plates

false or true

Over a cylinder

false or true

Over a sphere

false or true

Constant

-

-

false or true

External input

-

-

false or true

Equations

Fundamental equation is :

Qflow=A  h_act   Ts  T__f 

 

The extended equation which is implemented in this library is:

Qflow=cor  A  h_act   Ts  T__f 

when Use Correction input = true, cor is specified by the input signal. If Use Correction input = false, cor is the constant value "1".

 

Heat transfer coefficient h_act is defined based on the selected option. The equation for each option is shown below.

Convection type: Natural

This type is for Natural convection, and there are 4 options including the default setting.

 

• 

Default : Use references for Natural = false

If you select this option, the generalized equation is valid.

Nu&equals;&lcub;C__lamRan__lamRa<ThresholdC__turRan__turotherwise

h_act&equals; h &equals;Nu  kX

The default value of the experimental parameters are for the vertical plate.

Nu&equals;&lcub;0.59Ra14Ra<1090.1Ra13otherwise

h_act&equals; h &equals;Nu  kX

And, several thermophysics properties are calculated with Modelica functions which call Maple's built-in library CoolProp.

For more information, see Fluid Properties Check.

Gr&equals;`HeatTransfer.Properties.Fluids.AirGrashof_pT`p&comma; T__s&comma; T__f&comma; g&comma; X 

Pr&equals;`HeatTransfer.Properties.Fluids.AirPrandtl_pT`p&comma; T__s&comma; T__f&comma; X 

Ra&equals;GrPr

k&equals;`HeatTransfer.Properties.Fluids.AirConductivity_pT`p&comma; T__s+T__f2 

g is gravity force and its value is 9.81.

 

• 

Reference "Vertical (Ra:10^4-10^13)" : Use references for Natural = true and Natural Convection type = Vertical(Ra:10^4-10^13)

Parameter values for this case is referred from [1].

Nu&equals;&lcub;0.59Ra14Ra<1090.1Ra13otherwise

h_act&equals; h &equals;Nu  kX

The calculation for thermophysics properties is same as Default : Use references for Natural = false.

 

• 

Reference "Horizontal Upper Warm (Ra:10^4-10^11)" : Use references for Natural = true and Natural Convection type = Horizontal_Upper_Warm(Ra:10^4-10^11)

Parameter values for this case is referred from [1].

Nu&equals;&lcub;0.54Ra14Ra<1070.15Ra13otherwise

h_act&equals; h &equals;Nu  kX

The calculation for thermophysics properties is same as Default : Use references for Natural = false.

 

• 

Reference "Horizontal Upper Cold (Ra:10^5-10^11)" : Use references for Natural = true and Natural Convection type = Horizontal_Upper_Cold (Ra:10^5-10^11)

Parameter values for this case is referred from [1].

Nu&equals;&lcub;0.27Ra14Ra<1050.27Ra14otherwise

h_act&equals; h &equals;Nu  kX

The calculation for thermophysics properties is same as Default : Use references for Natural = false.

 

Convection type: Forced

This type is for Forced convection, and there are 5 options including the default setting.

 

• 

Default : Use references for Forced = false

If you select this option, the generalized equation is valid.

Nu&equals;CforcedRemforcedoffsetforcedPrnforced

h_act&equals; h &equals;Nu  kX

The default value of the experimental parameters are for the flat plate with the laminar flow.

Nu&equals;0.664Re12Pr13

h_act&equals; h &equals;Nu  kX

And, several thermophysics properties are calculated with Modelica functions which is to call Maple's built-in library CoolProp.

Please see more in Fluid Properties Check.

Re&equals;`HeatTransfer.Properties.Fluids.AirReynolds_pT`p&comma; T__s&comma; T__f&comma; X&comma; v 

Pr&equals;`HeatTransfer.Properties.Fluids.AirPrandtl_pT`p&comma; T__s&comma; T__f&comma; X 

k&equals;`HeatTransfer.Properties.Fluids.AirConductivity_pT`p&comma; T__s+T__f2 

 

• 

Reference "Tube and Duct" : Use references for Forced = true and Forced Convection type = Tube and Duct

For laminar flow, the constant Nusselt number is used in this option, and for turbulent, Dittus-Boetter's equation [2] is used.

Nu&equals;&lcub;3.66Re<2300&lcub;0.023Re0.8Pr0.4T__s<T__f0.023Re0.8Pr0.3otherwiseotherwise

h_act&equals; h &equals;Nu  kX

The calculation for thermophysics properties is same as Default : Use references for Forced = false.

 

• 

Reference "Over flat plates (Laminar)" : Use references for Forced = true and Forced Convection type = Over flat plates

Nu&equals;0.664Re12Pr13

h_act&equals; h &equals;Nu  kX

The calculation for thermophysics properties is same as Default : Use references for Forced = false.

 

• 

Reference "Over a cylinder" : Use references for Forced = true and Forced Convection type = Over a cylinder

This equation is given by Churchill and Bernstein [3], which is valid for the range 102<Re<107, RePr&gt;0.2.

Nu&equals;0.3&plus;0.62Re12Pr131&plus;0.4Pr23141&plus;Re2820005845

h_act&equals; h &equals;Nu  kX

The calculation for thermophysics properties is same as Default : Use references for Forced = false.

 

• 

Reference "Over a sphere" : Use references for Forced = true and Forced Convection type = Over a sphere

This equation is developed by Whitaker [4], which is valid for the range 3.5<Re<8104, 0.7<Pr<380.

Nu&equals;2&plus;0.4Re12&plus;0.06Re23Pr0.4&eta;__f&eta;__s14

h_act&equals; h &equals;Nu  kX

&eta;__f&equals;`HeatTransfer.Properties.Fluid.AirViscosity_pT`p&comma; T__f

&eta;__s&equals;`HeatTransfer.Properties.Fluid.AirViscosity_pT`p&comma; T__s

The calculation for the other thermophysics properties is same as Default : Use references for Forced = false.

Convection type: Constant

With this type, the heat transfer coefficient is specified by the value of parameter h.

h_act&equals;h

Convection type: External input

If using this type, the heat transfer coefficient is specified by the signal input hin.

h_act&equals;h__in

References

[1] : J. P. Holman. "Heat Transfer Ninth Edition", McGraw-Hill Higher Education.

[2] : Dittus, F. W. and L. M. K. Boelter, Univ. Calif. (Berkeley) Pub. Eng. vol. 2, p.443, 1930.

[3] : Churchill, S. W., and M. Bernstein. "A Correlating Equation for Forced Convection from Gases and Liquids to a Circular Cylinder in Crossflow",

    J. Heat Transfer, vol.99, pp.300-306, 1977.

[4] : Whitake, S. "Forced Convection Heat-Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and Flow

    in Packed Bids and Tube Bundles", AIChE J., vol.18 p361, 1972.

Variables

Symbol

Units

Description

Modelica ID

Q__flow

W

Heat flow rate from port a to solid port

Q_flow

T__s 

K

Temperature of solid port

 

T__f 

K

Temperature of fluid port

 

h_act

Wm2K

Actual heat transfer coefficient

h_act

h

Wm2K

The average heat transfer coefficient

 

Nu

Nusselt number

 

Re

Reynolds number

 

Pr

Prandtl number

 

Gr

Grashof number

 

Ra

Rayleigh number

 

k

WmK

Thermal conductivity

 

&eta;__s

Pas

Viscosity calculated with temperature of solid port

 

&eta;__f

Pas

Viscosity calculated with temperature of fluid port

 

 

Connections

Name

Units

Condition

Description

Modelica ID

solid

-

-

Thermal port of the solid side

solid

fluid

-

-

Thermal port of the fluid side

fluid

hin

Wm2K

if Convection type is
External input.

Input signal of the heat transfer coefficient

h_in

v

ms

if Convection type is
Forced.

Input signal of Wind speed for Forced convection

v

cor

-

if Use correction input is
true.

Input signal of the correction factor for Qflow

cor

Parameters

Symbol

Default

Units

Description

Modelica ID

Convection Type

Natural

Select Type of Convection

 Natural : Natural convection

 Forced : Force convection

 Constant : Constant heat transfer coefficient

 External input : Heat transfer coefficient given by input

TypeOfMedium

Use reference for Natural

false

If true, all parameters are defined by references

use_reference_natural

Natural Convection Type

VerticalRa&colon;10&Hat;410&Hat;13

Geometry type of Natural convection as references

NaturalConvecType

Use reference for Forced

false

If true, all parameters are defined by references

use_reference_forced

Forced Convection Type

Tube and Duct

Geometry type of Natural convection as references

ForcedConvecType

A

1.0

m2

Area of flow

A

X

1.0

m

Streamwise length

X

p

101325

Pa

Air pressure

p

Cforced 

0.664

Gain parameter for Reynolds number in the generalized experimental equation of Forced convection generalized equation

C_forced

mforced

12

Exponent parameter for Reynolds number in the generalized experimental equation of Forced convection generalized equation

m_forced

offsetforced

0

Offset parameter for Reynolds number in the generalized experimental equation of Forced convection generalized equation

offset_forced

nforced

13

Exponent parameter for Prandtl number in the generalized experimental equation of Forced convection generalized equation

n_forced

Clam

0.59

Gain parameter for Reynolds number in the generalized experimental equation of Natural convection generalized equation when Fluid is laminar

C_lam

nlam

14

Exponent parameter for Reynolds number in the generalized experimental equation of Natural convection generalized equation when Fluid is laminar

n_lam

Ctur

0.1

Gain parameter for Reynolds number in the generalized experimental equation of Natural convection generalized equation when Fluid is Turbulent

C_tur

ntur

13

Exponent parameter for Reynolds number in the generalized experimental equation of Natural convection generalized equation when Fluid is Turbulent

n_tur

Threshold

109

Threshold value for Reynolds number to define Laminar or Turbulent

TH

h

1

Wm2K

Constant heat transfer coefficient

h

Use Correction input

false

If true, input of correction for h is valid

use_correction

See Also

Heat Transfer Library Overview

Basic Overview