Heat Radiation - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Heat Radiation

Basic component of Radiation

 

Description

Equations

Variables

Connections

Parameters

See Also

Description

The Heat Radiation component models the thermal radiation emitted between two bodies as a result of their temperatures.

This component has 4 options to express the type of radiation which is defined by the parameter Radiation type.

Additionally, there are several built-in functions for radiation as references.

Refer to the below table which shows the implemented options.

 

Radiation type

Radiation geometry

Use Correction input

Constant

-

false or true

External input

-

false or true

General

-

false or true

Use References

Surrounded object

false or true

Two parallel plates

false or true

Two long concentric cylinders

false or true

Concentric spheres

false or true


The following table gives images of radiation geometry when Radiation type is Use References.

Radiation type

Radiation geometry

Use References

Surrounded object

Two parallel plates

Two long concentric cylinders

Concentric spheres

 

Additionally, if you set Use reference of emissivity for Material 1 / 2 as true, the built-in emissivity data can be used as references.

Refer to the below table about the built-in emissivity data.

 

Material

Emissivity value

Brass Polished

0.03

Brass Oxidized 600oC

0.6

Copper electroplated

0.03

Copper Polished

0.04

Steel Oxidized

0.79

Steel Polished

0.07

Steel Galvanized New

0.23

Steel Galvanized Old

0.88

Stainless Steel, Polished

0.075

Stainless Steel, weathered

0.85

Aluminum Foil

0.04

Aluminium Heavily Oxidized

0.25

Iron, dark gray surface

0.31

Iron, plate rusted red

0.61

Cast Iron

0.65

Cast Iron, newly turned

0.44

Wrought Iron

0.94

Lead Oxidized

0.43

Carbon, not oxidized

0.81

Plastics

0.91

Rubber Nat Hard

0.91

Porcelain, glazed

0.92

Glass smooth

0.93

Paper

0.93

 

Equations

Fundamental equation is :

Qflow=Gr__act  σ   T__a4  T__b4 

 

The extended equation which is implemented in this library is :

Qflow=cor  Gr__act  σ   T__a4  T__b4 

when Use Correction input = true, cor is specified by the input signal. If Use Correction input = false, cor is the constant value "1".

 

Net radiation conductance between two surfaces Gr__act is defined based on the selected option. The equation for each option is shown below.

Radiation type : Constant

With this type, the net radiation conductance is specified by the value of parameter Gr.

Gr__act=Gr

Radiation type : External input

If you use this type, the net radiation conductance is specified by the signal input Grin.

Gr__act=Gr__in

Radiation type : General

If you use this type, the generalized equation is valid for the net radiation conductance.

The following equation is based on the radiation network for two surfaces that exchange heat with each other and no other route of heat.

Gr__act=11ε__act1A__1ε__act1+1A__1F__12+1ε__act2A__2ε__act2

 

Radiation type : Use References

If you use this type, references can be used for the net radiation conductance, and there are 4 options.

 

• 

"Surrounded object" : Radiation Geometry = Surrounded object

Gr__act=A__1ε__act1

 

• 

"Two parallel plates" : Radiation Geometry = Two parallel plates

Gr__act=A__11ε__act1+1ε__act21

 

• 

"Two long concentric cylinders" : Radiation Geometry = Two long concentric cylinders

Gr__act=2πr__1L__11ε__act1+1ε__act21r__1r__2

 

• 

"Concentric spheres" : Radiation Geometry = Concentric spheres

Gr__act1=4πr__121ε__act1+1ε__act2ε__act2r__1r__22

 

Variables

Symbol

Units

Description

Modelica ID

Q__flow

W

Heat flow rate from port a to port b

Q_flow

T__a 

K

Temperature of port a

 

T__b 

K

Temperature of port b

 

Gr__act

m2

Net radiation conductance between two surfaces

Gr_act

σ

wm2K4

Stefan-Boltzmann constant 5.670373e-8

sigma

ε__act1

Emissivity of object 1 on port a

eps_act1

ε__act2

Emissivity of object 2 on port b

eps_act2

 

Connections

Name

Units

Condition

Description

Modelica ID

port_a

-

-

Thermal port, a

port_a

port_b

-

-

Thermal port, b

port_b

Gr__in

m2

if Radiation type is
External input.

Input signal of the heat transfer coefficient

Gr_in

cor

-

if Use correction input is
true.

Input signal of the correction factor for Qflow

cor

Parameters

Symbol

Default

Units

Description

Modelica ID

Radiation Type

General

Select Type of Radiation

 General : Use the generalized equation

 Constant : Radiation conductance is constant

 External input: Radiation conductance given by input

 Use References : Use references for Radiation conductance

TypeOfRadiation

Radiation Geometry

Surrounded object

Geometry type of Radiation.

RadiationGeometry

Use references of  emissivity for Material1

false

If true, Emissivity for Material 1 are defined by reference data

use_reference_emissivity1

Use references of  emissivity for Material2

false

If true, Emissivity for Material 2 are defined by reference data

use_reference_emissivity2

Material 1

Brass Polished :0.03

Emissivity for Material 1 if Use references of emissivity for Material 1 is true.

TypeOfMaterial1

Material 2

Brass Polished :0.03

Emissivity for Material 2 if Use references of emissivity for Material 2 is true.

TypeOfMaterial2

ε__1

1

 

Emissivity of object 1 on port a

eps1

ε__2

1

 

emissivity of object 2 on port b

eps2

A__1

1

m2

Surface area of object 1

A1

A__2

1

m2

Surface area of object 2

A2

r__1

0.1

m

Radius of object 1, Inner

r1

r__2

0.2

m

Radius of object 2, Outer

r2

L__1

0.1

m

Length of object 1

L1

F__12

1

View factor for Radiation

F12

Gr

1

m2

Net radiation conductance between two surfaces

Gr

Use Correction input

false

If true, input of correction for Gr_act is valid

use_correction

See Also

Heat Transfer Library Overview

Basic Overview