OrbitProblemSolution - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LREtools[HypergeometricTerm]

  

OrbitProblemSolution

  

solve the sigma-orbit problem

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

OrbitProblemSolution(α, β, x, r)

Parameters

α

-

first polynomial or an algebraic number

β

-

second polynomial or an algebraic number

x

-

independent variable, for example, x

r

-

list of equations which gives the tower of hypergeometric extensions

Description

• 

The OrbitProblemSolution(α, β, x, r) command returns the solution of a σ-orbit problem, that is, a positive integer n such that En1αEαα=β. α and β can be algebraic numbers or polynomials in K(r), where K is the ground field and r is the tower of hypergeometric extensions. Each ri is specified by a hypergeometric term, that is, Eriri is a rational function over K. E is the shift operator.

• 

If α and β are algebraic numbers then the procedure solves the classic orbit problem (αn=β). Otherwise, it solves the σ-orbit problem for polynomials in the tower of hypergeometric extensions. This means that the polynomials can contain hypergeometric terms in their coefficients. These terms are defined in the parameter r. Each hypergeometric term in the list is specified by a name, for example, t. It can be specified directly in the form of an equation, for example, t=n!, or specified as a list consisting of the name of the term variable and the consecutive term ratio, for example, t,n+1. The OrbitProblemSolution function returns −1 if there is no solution.

• 

If the arguments of the σ-orbit problem are algebraic numbers, then the routine directly computes the solution. Otherwise, a hypergeometric dispersion is calculated. For an empty tower of hypergeometric extensions, a simple dispersion is calculated.

Examples

withLREtoolsHypergeometricTerm:

OrbitProblemSolutions+1,s+12s+1,x,s=2x

2

(1)

OrbitProblemSolutiont+s,t+sx+1t+2s,x,t=x!,s=2x

2

(2)

References

  

Abramov, S.A., and Bronstein, M. "Hypergeometric dispersion and the orbit problem." Proc. ISSAC 2000.

See Also

LREtools[HypergeometricTerm]

LREtools[HypergeometricTerm][HGDispersion]