KF Object as Operator
Calling Sequence
Parameters
Description
Examples
Compatibility
K(X,Y)
X,Y
-
VectorField objects (see LieAlgebrasOfVectorFields[VectorField] for how to construct one)
Let K be the Killing form of a LAVF object L. The K can act as a symmetric bilinear operator on vector fields.
This method is associated with the local KF object. For more detail, see Overview of the KF object for more detail.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡α⁡x,y,β⁡x,y,ξ⁡x,y,η⁡x,y:
V≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
E2≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,indep=x,y,dep=ξ,η
E2≔ξy,y=0,ηx=−ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η
We first construct a LAVF object for E(2).
L≔LAVF⁡V,E2
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
IsLieAlgebra⁡L
true
Get its KillingForm as a local KF object.
K≔KillingForm⁡L
K≔X,Y↦−2⋅∂∂yX⁡x⋅∂∂yY⁡x
Now we create a second vector field on the same space
X≔V
X≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
Y≔subs⁡ξ=α,η=β,V
Y≔α⁢ⅆⅆx+β⁢ⅆⅆy
K⁡X,Y
−2⁢ξy⁢αy
The KF Object as Operator command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
KF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
IsLieAlgebra
KillingForm
Download Help Document