LieAlgebrasOfVectorFields
LAVF
construct a LAVF object
Calling Sequence
Parameters
Description
Examples
Compatibility
LAVF(vf, dq)
LAVF(vf, str)
vf
-
a VectorField object
dq
a LHPDE object
str
a string: either "trivial" or "universal"
The command LAVF(...) is for constructing a LAVF object. A valid LAVF object then has access to at least 60 methods which allow it to be manipulated and its contents queried. For more detail, see Overview of the LAVF object.
In the first calling sequence, the input argument vf must be a type VectorField whose components are indeterminant functionals (as infinitesimals), and dq must be a type LHPDE object whose dependent variables include all components of vf.
For convenience the second calling sequence is a special constructor for either a trivial LAVF object or a universal LAVF object. A trivial LAVF object means its determining system is trivial (i.e. only the zero solution). For example, let V be a VectorField object containing indeterminant infinitesimals, a call LAVF(V,"trivial") is equal to the call LAVF(V, LHPDE("trivial", dep = GetComponents(V), indep = GetSpace(V))). And a universal LAVF object has empty system (i.e. no restriction on solutions).
This command is part of the LieAlgebrasOfVectorFields package. For more detail, see Overview of the LieAlgebrasOfVectorFields package.
This command can be used in the form LAVF(...) only after executing the command with(LieAlgebrasOfVectorFields), but can always be used in the form :-LieAlgebrasOfVectorFields:-LAVF(...).
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
We first construct a vector field and a LHPDE object for representing the determining system for E(2).
V≔VectorField⁡ξ⁡x,y,x,η⁡x,y,y,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
E2Sys≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x+diff⁡ξ⁡x,y,y=0,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,dep=ξ,η
E2Sys≔ξy,y=0,ηx+ξy=0,ηy=0,ξx=0,indep=x,y,dep=ξ,η
E2≔LAVF⁡V,E2Sys
E2≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
Data attributes of E2 can be obtained by...
GetVectorField⁡E2
ξ⁢ⅆⅆx+η⁢ⅆⅆy
GetDeterminingSystem⁡E2
ξy,y=0,ξx=0,ηx=−ξy,ηy=0,indep=x,y,dep=ξ,η
A valid LAVF object then has access to various methods. See Overview of the LAVF object for more information.
exports⁡E2,static
indets,has,hastype,type,GetVectorField,GetDeterminingSystem,ImplicitForm,SolutionDimension,IsFiniteType,IsTrivial,ParametricDerivatives,GetRanking,SetIDBasis,GetIDBasis,GetSpace,IsFlat,OrbitDistribution,OrbitDimension,InvariantCount,IsTransitive,Invariants,IsLieAlgebra,IsPerfect,DerivedAlgebra,IsSolvable,IsSoluble,DerivedSeries,SolvableRadical,SolubleRadical,Radical,IsNilpotent,Hypercentre,Hypercenter,NilRadical,Nilradical,LowerCentralSeries,UpperCentralSeries,IsAbelian,IsCommutative,Centre,Center,IsSemiSimple,IsReductive,NilpotentRadical,StructureConstants,StructureCoefficients,KillingRadical,KillingPolynomial,KillingForm,KillingOrthogonal,AdjointMatrix,AreCommuting,AreSame,AreSameSpace,Centraliser,Centralizer,Normaliser,CleanDependencies,Copy,DChange,dchange,Intersection,IsIdeal,IsInvariant,IsotropyRepresentation,IsSubspace,LAVFSolve,VectorSpaceSum,LieProduct,ProjectToSpace,Transporter,ModuleCopy,ModulePrint,ModuleApply
A simple way to construct a LAVF object whose determining system has trivial solution.
LAVF⁡V,trivial
ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξ=0,η=0
Similarly, construct a universal LAVF:
LAVF⁡V,universal
ξ⁢ⅆⅆx+η⁢ⅆⅆy&where
The LieAlgebrasOfVectorFields[LAVF] command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
VectorField (Object overview)
LHPDE (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
Download Help Document