Intersection
find a LHPDE object whose solution space is the intersection of solution spaces of given LHPDE objects.
Calling Sequence
Parameters
Description
Examples
Compatibility
Intersection( obj1, obj2, ..., depname = vars )
obj1, obj2, ...
-
a sequence of LHPDE objects living on the same space
vars
(optional) a list of new dependent variable names
Let obj1, obj2, ... be a sequence of LHPDE objects living on the same space (see AreSameSpace). The Intersection method finds a LHPDEs system whose solution space is the intersection of solutions of obj1,obj2,....
The method returns a rif-reduced LHPDE object.
By default, the dependent variable names of the returned object are taken from obj1. The dependent variable names will be vars if the optional argument depname = vars is specified.
This method is associated with the LHPDE object. For more detail, see Overview of the LHPDE object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡α,β,η,φ,ψ,ξ⁡x,y
S≔LHPDE⁡diff⁡ξ⁡x,y,x=0,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,y+diff⁡η⁡x,y,x=0,diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x,x=0
S≔ξx=0,ηy=0,ξy+ηx=0,ξy,y=0,ηx,x=0,indep=x,y,dep=η,ξ
S1≔LHPDE⁡diff⁡α⁡x,y,x,x=0,diff⁡α⁡x,y,y=0,diff⁡β⁡x,y,x=0,diff⁡β⁡x,y,y,y=0,diff⁡α⁡x,y,x−diff⁡β⁡x,y,y=0,indep=x,y,dep=α,β
S1≔αx,x=0,αy=0,βx=0,βy,y=0,αx−βy=0,indep=x,y,dep=α,β
Intersection⁡S,S1
ηx=0,ξx=0,ηy=0,ξy=0,indep=x,y,dep=η,ξ
Intersection⁡S,S1,depname=φ,ψ
φx=0,ψx=0,φy=0,ψy=0,indep=x,y,dep=φ,ψ
The Intersection command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LHPDE (Object overview)
LieAlgebrasOfVectorFields[LHPDE]
AreSameSpace
Download Help Document