Hessenberg Form - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LinearAlgebra[Generic]

  

HessenbergForm

  

compute the Hessenberg form of a square Matrix

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

HessenbergForm[F](A)

HessenbergForm[F](A,output=out)

Parameters

F

-

a table or module, the domain of computation, a field

A

-

square Matrix of values in F

out

-

one of H, U or a list containing one or more of these names

Description

• 

HessenbergForm[F](A) returns the upper Hessenberg form H of A.

• 

Given an n x n Matrix A of elements in a field F, the algorithm converts a copy of A into upper Hessenberg form H using O(n^3) operations in F. The algorithm requires that F be a field and should only be used if F is finite as there is severe expression swell in computing H.

• 

The (indexed) parameter F, which specifies the domain of computation, a field, must be a Maple table/module which has the following values/exports:

  

F[`0`]: a constant for the zero of the ring F

  

F[`1`]: a constant for the (multiplicative) identity of F

  

F[`+`]: a procedure for adding elements of F (nary)

  

F[`-`]: a procedure for negating and subtracting elements of F (unary and binary)

  

F[`*`]: a procedure for multiplying two elements of F (commutative)

  

F[`/`]: a procedure for dividing two elements of F

  

F[`=`]: a boolean procedure for testing if two elements in F are equal

Examples

withLinearAlgebraGeneric:

Q`0`,Q`1`,Q`+`,Q`-`,Q`*`,Q`/`,Q`=`0,1,`+`,`-`,`*`,`/`,`=`:

AMatrix2,7,3,4,1,3,4,5,7,10,5,7,7,10,5,7

A2−7−341−3−45−7105−7−7105−7

(1)

HHessenbergFormQA

H2−14141−10150−465280000

(2)

H,UHessenbergFormQA,output=H,U

H,U2−14141−10150−465280000,10000100071000−11

(3)

MatrixMatrixMultiplyQMatrixMatrixMultiplyQU,A,MatrixInverseQU

2−14141−10150−465280000

(4)

See Also

Hessenberg Form

LinearAlgebra[Generic]

LinearAlgebra[Generic][HessenbergAlgorithm]

LinearAlgebra[Generic][MatrixMatrixMultiply]

LinearAlgebra[HessenbergForm]