RegularChains[FastArithmeticTools]
IteratedResultantDim0
iterated resultant of a polynomial w.r.t a 0-dim regular chain
Calling Sequence
Parameters
Description
Examples
IteratedResultantDim0(f, rc, R)
R
-
a polynomial ring
rc
a regular chain
f
a polynomial
The function call IteratedResultantDim0(f, rc, R) returns the iterated resultant of f w.r.t. rc. See the command IteratedResultant for a definition of the notion of an iterated resultant.
rc is assumed to be a zero-dimensional normalized regular chain.
Moreover R must have a prime characteristic p such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f and rc are, the larger must be e such that 2e divides p−1. If the degree of f or rc is too large, then an error is raised.
with⁡RegularChains:
with⁡FastArithmeticTools:
with⁡ChainTools:
Define a ring of polynomials.
p≔962592769;vars≔x1,x2,x3,x4:R≔PolynomialRing⁡vars,p:
p≔962592769
Randomly generating (dense) regular chain and polynomial
N≔nops⁡vars:dg≔3:degs≔seq⁡4,i=1..N:pol≔randpoly⁡vars,dense,degree=dg+rand⁡modpmodp;tc≔RandomRegularChainDim0⁡vars,degs,p;Equations⁡tc,R
pol≔962592762⁢x13+22⁢x12⁢x2+962592714⁢x12⁢x3+962592675⁢x12⁢x4+962592713⁢x1⁢x22+962592707⁢x1⁢x2⁢x4+962592696⁢x1⁢x32+962592765⁢x1⁢x3⁢x4+962592759⁢x1⁢x42+80⁢x23+962592725⁢x22⁢x3+71⁢x22⁢x4+962592694⁢x2⁢x32+962592759⁢x2⁢x3⁢x4+962592729⁢x2⁢x42+23⁢x33+75⁢x32⁢x4+6⁢x3⁢x42+37⁢x43+87⁢x12+97⁢x1⁢x2+962592686⁢x1⁢x3+62⁢x1⁢x4+962592752⁢x22+962592762⁢x2⁢x3+42⁢x2⁢x4+962592677⁢x32+74⁢x3⁢x4+962592746⁢x42+962592687⁢x1+962592719⁢x2+72⁢x3+87⁢x4+874547123
tc≔regular_chain
x14+962592759⁢x13+962592687⁢x2+71⁢x3+16⁢x4+83⁢x12+9⁢x22+962592709⁢x3+962592686⁢x4+98⁢x2+962592721⁢x32+962592750⁢x4+62⁢x3+37⁢x42+5⁢x4+96⁢x1+962592752⁢x23+25⁢x3+91⁢x4⁢x22+98⁢x32+962592705⁢x4+64⁢x3+962592679⁢x42+962592709⁢x4+962592735⁢x2+962592756⁢x33+44⁢x4+962592767⁢x32+71⁢x42+962592722⁢x4+962592730⁢x3+962592716⁢x43+962592697⁢x42+962592672⁢x4+91831581,x24+x23+x3+55⁢x4+962592741⁢x22+16⁢x32+30⁢x4+962592742⁢x3+962592754⁢x42+962592710⁢x4+962592673⁢x2+72⁢x33+962592682⁢x4+47⁢x32+962592679⁢x42+43⁢x4+92⁢x3+962592678⁢x43+962592681⁢x42+962592721⁢x4+614095058,x34+11⁢x33+962592720⁢x4+962592722⁢x32+40⁢x42+962592688⁢x4+91⁢x3+68⁢x43+962592759⁢x42+31⁢x4+175602554,x44+962592746⁢x43+10⁢x42+962592708⁢x4+685457535
Compute the iterated resultant of pol w.r.t. tc
r1≔IteratedResultantDim0⁡pol,tc,R
r1≔446889812
Compare with the generic algorithm (non-fast and non-modular algorithm) of the command IteratedResultant.
r2≔IteratedResultant⁡pol,tc,R
r2≔446889812
Check that the two results match.
Expand⁡r1−r2modp
0
See Also
IteratedResultant
IteratedResultantDim1
RandomRegularChainDim0
RandomRegularChainDim1
RegularChains
ResultantBySpecializationCube
SubresultantChainSpecializationCube
Download Help Document