RegularChains[FastArithmeticTools]
RegularGcdBySpecializationCube
regular GCD of two polynomials modulo a regular chain
Calling Sequence
Parameters
Description
Examples
RegularGcdBySpecializationCube(f1, f2, rc, SCube, R)
R
-
polynomial ring
f1
polynomial of R
f2
rc
regular chain
SCube
subresultant chain specialization cube
The command RegularGcdBySpecializationCube returns a list of pairs gi,rci where pi is a polynomial and rci is a regular chain such that the regular chains rci all together form a triangular decomposition of rc in the sense of Lazard, and each polynomial gi is a GCD of f1 and f2 modulo rc_i, for all i. See the command RegularGcd for details on this notion of polynomial GCD modulo the saturated ideal of a regular chain.
f1 and f2 must have the same main variable v, with degree⁡f2,v≤degree⁡f1,v and init⁡f1, init⁡f2 both regular w.r.t the saturated ideal of rc.
The resultant of f1 and f2 w.r.t. v must be null modulo the saturated ideal of rc.
R must have a prime characteristic p such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f1 and f2 are, the larger e must be such that 2e divides p−1. If the degree of f1 or f2 is too large, then an error is raised.
The algorithm implemented by the command RegularGcd is more general and does not require the latter two assumptions. However, when both commands can be used the command RegularGcdBySpecializationCube is very likely to outperform RegularGcd, since it relies on modular techniques and asymptotically fast polynomial arithmetic.
with⁡RegularChains:
with⁡FastArithmeticTools:
with⁡ChainTools:
Define a ring of polynomials.
p≔962592769;vars≔x,a,b,c,d;R≔PolynomialRing⁡vars,p
p≔962592769
vars≔x,a,b,c,d
R≔polynomial_ring
Define two polynomials of R.
f1≔x2−a⁢x−bmodp
f1≔x2+962592768⁢a⁢x+962592768⁢b
f2≔x2−c⁢x−dmodp
f2≔x2+962592768⁢c⁢x+962592768⁢d
Compute images of the subresultant chain of sufficiently many points in order to interpolate. Multi-dimensional TFT (Truncated Fourier Transform) is used to evaluate and interpolate since 1 is passed as fifth argument
SCube≔SubresultantChainSpecializationCube⁡f1,f2,x,R,1
SCube≔subresultant_chain_specialization_cube
Interpolate the resultant from the SCube
r2≔ResultantBySpecializationCube⁡f1,f2,x,SCube,R
r2≔a2⁢b3⁢d2+962592768⁢a2⁢b2⁢d3+962592767⁢a⁢b3⁢c⁢d2+2⁢a⁢b2⁢c⁢d3+d2⁢c2⁢b3+962592768⁢d3⁢c2⁢b2+962592768⁢a3⁢b3+a3⁢b2⁢d+2⁢a2⁢b3⁢c+962592767⁢a2⁢b2⁢c⁢d+962592768⁢a2⁢b⁢c⁢d2+a2⁢c⁢d3+962592768⁢a⁢b3⁢c2+a⁢b2⁢c2⁢d+2⁢a⁢b⁢c2⁢d2+962592767⁢a⁢c2⁢d3+962592768⁢d2⁢c3⁢b+d3⁢c3+a3⁢b⁢c+962592768⁢a3⁢c⁢d+962592767⁢a2⁢b⁢c2+2⁢a2⁢c2⁢d+a⁢b⁢c3+962592768⁢a⁢c3⁢d
Define a regular chain with r2. Note that r2 is not required to be square free.
rc≔Chain⁡r2,Empty⁡R,R
rc≔regular_chain
Compute a regular GCD of f1 and f2 modulo rc
g2≔RegularGcdBySpecializationCube⁡f1,f2,rc,SCube,R
g2≔962592768⁢a⁢b2⁢d+a⁢b2⁢x+a⁢b⁢d2+962592768⁢a⁢d2⁢x+c⁢d⁢b2+962592768⁢b2⁢c⁢x+962592768⁢d2⁢c⁢b+c⁢d2⁢x+962592768⁢b⁢a2+a2⁢x+a⁢b⁢c+a⁢c⁢d+962592767⁢a⁢c⁢x+962592768⁢d⁢c2+c2⁢x,regular_chain,b⁢x2+962592768⁢d⁢x2+962592768⁢a⁢b+a⁢x+c⁢d+962592768⁢c⁢x,regular_chain,b⁢x2+962592768⁢d⁢x2+962592768⁢a⁢b+a⁢x+c⁢d+962592768⁢c⁢x,regular_chain
See Also
RegularChains
RegularGcd
ResultantBySpecializationCube
SubresultantChainSpecializationCube
Download Help Document