RegularChains[SemiAlgebraicSetTools]
PositiveInequalities
return the positive inequalities of a regular semi-algebraic system
Calling Sequence
Parameters
Description
Examples
Compatibility
PositiveInequalities(rsas, R)
rsas
-
regular semi-algebraic system
R
polynomial ring
The command PositiveInequalities(rsas, R) returns the defining positive inequalities of the regular semi-algebraic system rsas. The polynomials must belong to R which must have characteristic zero.
See the page SemiAlgebraicSetTools for the definitions of a regular semi-algebraic system and that of a regular semi-algebraic set.
with⁡RegularChains:
with⁡SemiAlgebraicSetTools:
F≔a⁢x2+b⁢x+c=0,0<x,a≠0
R≔PolynomialRing⁡x,c,b,a
R≔polynomial_ring
out≔LazyRealTriangularize⁡F,R,output=list
out≔regular_semi_algebraic_system
map⁡Display,out,R
a⁢x2+b⁢x+c=0x>0−4⁢c⁢a+b2>0andb<0andc>0anda≠0or−4⁢c⁢a+b2>0andb>0andc>0anda<0or−4⁢c⁢a+b2>0andb>0andc<0anda≠0or−4⁢c⁢a+b2>0andb<0andc<0anda>0
P≔PositiveInequalities⁡out1,R
P≔x
rc≔RepresentingChain⁡out1,R
rc≔regular_chain
qff≔RepresentingQuantifierFreeFormula⁡out1
qff≔quantifier_free_formula
Display⁡qff,R
−4⁢c⁢a+b2>0andb<0andc>0anda≠0
or−4⁢c⁢a+b2>0andb>0andc>0anda<0
or−4⁢c⁢a+b2>0andb>0andc<0anda≠0
or−4⁢c⁢a+b2>0andb<0andc<0anda>0
Display⁡out1,R
The RegularChains[SemiAlgebraicSetTools][PositiveInequalities] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
See Also
RealTriangularize
RegularChains
RepresentingChain
RepresentingQuantifierFreeFormula
SemiAlgebraicSetTools
Download Help Document