RegularChains[SemiAlgebraicSetTools]
RepresentingChain
return the regular chain part of a regular semi-algebraic set/system
Calling Sequence
Parameters
Description
Examples
RepresentingChain(rst, R)
RepresentingChain(rsas, R)
rst
-
a regular semi-algebraic set
rsas
a regular semi-algebraic system
R
a polynomial ring
The command RepresentingChain(rst, R) or the command RepresentingChain(rsas, R) returns the regular chain part of its first argument.
See the page SemiAlgebraicSetTools for the definition of a regular semi-algebraic system and that of a regular semi-algebraic set.
with⁡RegularChains:
with⁡ChainTools:
with⁡ParametricSystemTools:
with⁡SemiAlgebraicSetTools:
f≔a⁢x2+b⁢x+c
F≔f
F≔a⁢x2+b⁢x+c
N≔
P≔
H≔
R≔PolynomialRing⁡x,a,b,c
R≔polynomial_ring
d≔3
rrc≔RealRootClassification⁡F,N,P,H,d,1..n,R
rrc≔regular_semi_algebraic_set,border_polynomial
rst≔rrc11
rst≔regular_semi_algebraic_set
rc≔RepresentingChain⁡rst,R
rc≔regular_chain
Info⁡rc,R
F≔a⁢x2+b⁢x+c=0,0<x,a≠0
R≔PolynomialRing⁡x,c,b,a
out≔LazyRealTriangularize⁡F,R,output=list
out≔regular_semi_algebraic_system
map⁡Display,out,R
a⁢x2+b⁢x+c=0x>0−4⁢c⁢a+b2>0andb<0andc>0anda≠0or−4⁢c⁢a+b2>0andb>0andc>0anda<0or−4⁢c⁢a+b2>0andb>0andc<0anda≠0or−4⁢c⁢a+b2>0andb<0andc<0anda>0
P≔PositiveInequalities⁡out1,R
P≔x
rc≔RepresentingChain⁡out1,R;Display⁡rc,R
a⁢x2+b⁢x+c=0a≠0
qff≔RepresentingQuantifierFreeFormula⁡out1;Display⁡qff,R
qff≔quantifier_free_formula
−4⁢c⁢a+b2>0andb<0andc>0anda≠0
or−4⁢c⁢a+b2>0andb>0andc>0anda<0
or−4⁢c⁢a+b2>0andb>0andc<0anda≠0
or−4⁢c⁢a+b2>0andb<0andc<0anda>0
Display⁡out1,R
See Also
IsParametricBox
PositiveInequalities
RealRootClassification
RegularChains
RepresentingBox
RepresentingQuantifierFreeFormula
RepresentingRootIndex
VariableOrdering
Download Help Document