Chapter 4: Integration
Section 4.5: Improper Integrals
Example 4.5.2
Determine whether the improper integral ∫1∞1x ⅆx converges or diverges.
Solution
Mathematical Solution
∫1∞1x ⅆx=limt→∞∫1t1x ⅆx=limt→∞lnx1tlimt→∞lnt−ln1 = limt→∞lnt = ∞
The integral diverges.
Maple Solution
Apply Maple to the improper integral
Control-drag the integral. Context Panel: Evaluate and Display Inline
∫1∞1x ⅆx = ∞
Integrate to a finite endpoint, then take the limit
Control-drag the integral Change the upper limit from ∞ to t
Context Panel: Simplify≻Assuming Real Range (See Figure 4.5.1(a).)
Context Panel: Assign to a Name≻q
∫1t1x ⅆx→assuming real rangeln⁡t→assign to a nameq
Expression palette: Limit template Context Panel: Evaluate and Display Inline
limt→∞q = ∞
Alternate evaluation of ∫1t1x ⅆx
Append the assuming option to the integral. Context Panel: Evaluate and Display Inline
∫1t1x ⅆx assuming t>1 = ln⁡t
<< Previous Example Section 4.5 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document