Chapter 5: Applications of Integration
Section 5.1: Area of a Plane Region
Example 5.1.4
Calculate the area of the region R bounded by the graphs of fx=1,gx=1−3 x/2, and hx=x.
Solution
Mathematical Solution
Integration by vertical strips
The animation in Figure 5.1.4(a) shows the region R shaded in blue, and the graphs of f,g, and h in black, red, and green, respectively.
The dotted vertical line passes through through A, the intersection of the graphs of g and h.
As the animation progresses, a yellow vertical strip sweeps through that portion of R that lies to the left of the dotted line segment. As the strip passes to the rightmost portion of R, its color changes to cyan as a reminder that the lower bound of integration changes across A.
The coordinates of point A are 24−7/9,7−1/3≐0.3,0.5
module() local p1,p2,p3,p4,p5,G,M; p1:=plot([1,sqrt(x),1-3*x/2],x=0..1,view=[0..1,0..1],labels=[x,y],color=[black,red,green],thickness=[4,3,3]): p2:=plots:-inequal({y<=1,y>=sqrt(x),y>=1-3*x/2},x=0..1,y=(sqrt(7)-1)/3..1,color=blue,transparency=.8): p3:=plot([[2*(4-sqrt(7))/9,1],[2*(4-sqrt(7))/9,(sqrt(7)-1)/3]],linestyle=dot,color=black): p4:=plots:-textplot([.35,.55,typeset(A)]): p5:=plots:-display(p1,p2,p3,p4): G:=proc(s) local S,P; S:=evalf(2*(4-sqrt(7))/9): if s<=S then P:=plot([[s,1-3*s/2],[s,1]],color=yellow,thickness=10); else P:=plot([[s,sqrt(s)],[s,1]],color=cyan,thickness=10); end if; end: M:=plots:-animate(G,[x],x=0..1,frames=31,background=p5,digits=3): print(M); end module:
Figure 5.1.4(a) Area of R by vertical strips (dx)
The area of R is given by
∫02 4−7/91−1−3 x/2 ⅆx+∫2 4−7/911−x ⅆx
=−2081+1481⁢7
≐0.2103767699
Integration by horizontal strips
The animation in Figure 5.1.4(b) shows the region R shaded in blue, and the graphs of f,g, and h in black, red, and green, respectively.
The coordinates of point A, the intersection of the graphs of g and h, are 24−7/9,7−1/3≐0.3,0.5
The animation shows a horizontal strip moving through R, from point A to the line y=1. Its ends remain on the red and green bounding curves, so the integration by horizontal strips can be accomplished by a single definite integral.
module() local p1,p2,p3,p4,p5,G,M; p1:=plot([1,sqrt(x),1-3*x/2],x=0..1,view=[0..1,0..1],labels=[x,y],color=[black,red,green],thickness=[4,3,3]): p2:=plots:-inequal({y<=1,y>=sqrt(x),y>=1-3*x/2},x=0..1,y=(sqrt(7)-1)/3..1,color=blue,transparency=.8): p3:=plots:-textplot([.35,.55,typeset(A)]): p4:=plots:-display(p1,p2,p3): G:=s->plot([[2*(1-s)/3,s],[s^2,s]],color=yellow,thickness=10): M:=plots:-animate(G,[y],y=(sqrt(7)-1)/3..1,frames=21,background=p4,digits=3): print(M); end module:
Figure 5.1.4(b) Area of R by horizontal strips (dy)
∫7−1/31y2−2 1−y/3 ⅆy=−2081+1481⁢7 ≐ 0.2103767699
Maple Solution
Define the functions g and h
Control-drag the expression for g. Context Panel: Assign to a Name≻g
1−3 x/2→assign to a nameg
Control-drag the expression for h. Context Panel: Assign to a Name≻h
x→assign to a nameh
Solve g=h to determine the coordinates of point A
Set g=h and press the Enter key.
Context Panel: Solve≻Obtain Solutions for≻x
Context Panel: Assign to a Name≻Ax
g=h
1−32⁢x=x
→solutions for x
89−29⁢7
→assign to a name
Ax
Expression palette: Evaluation template
Context Panel: Evaluate and Display Inline
Context Panel: Assign to a Name≻Ay
gx=a|f(x)x=Ax = −13+13⁢7→assign to a nameAy
Expression palette: Definite-integral template Press the Enter key.
Context Panel: Simplify≻Simplify
Context Panel: Approximate≻10 (digits)
∫0Ax1−g ⅆx+∫Ax11−h ⅆx
34⁢89−29⁢72−8981+3881⁢7
= simplify
−2081+1481⁢7
→at 10 digits
0.2103767699
Integration by horizontal strips:
xR=h−1y=y2
xL=g−1y=Gy
Write the equation y=g and press the Enter key.
Context Panel: Assign to a Name≻G
y=g
y=1−32⁢x
23−23⁢y
G
∫Ay1y2−G ⅆy
−29−13⁢−13+13⁢73+29⁢7−13⁢−13+13⁢72
<< Previous Example Section 5.1 Next Section >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document