Chapter 5: Applications of Integration
Section 5.6: Differential Equations
Example 5.6.4
Graph the solution of the initial-value problem consisting of the differential equation y′=4⁢x⁢y2+8⁢y2+x+2, and the initial condition y1=0.
Solution
Mathematical Solution
The right-hand side of the differential equation factors to 2+x1+4 y2, so the equation is separable. The solution of the IVP is
∫0y11+4 s2 ⅆs
=∫1x2+s ⅆs
arctan2 s20y
=2 s+s221x
arctan2 y/2
=2 x+x2/2−2+1/2
arctan2 y
=4 x+x2−5
y
=tanx2+4 x−5/2
Figure 5.6.4(a) Solution of IVP
The solution of the initial-value problem is contained in Figure 5.6.4(a). Only the branch of the tangent function that passes through 1,0 can be considered the solution of the IVP; all the other branches satisfy the differential equation but not the initial condition y1=0.
Maple Solution
Solution via Context Panel
Control-drag the differential equation. Press the Enter key.
Context Panel: Add an Initial Condition≻y1=0 (enter into the pop-up dialog)
Context Panel: Solve DE≻yx
y′=4⁢x⁢y2+8⁢y2+x+2
ⅆⅆx⁢y⁡x=4⁢x⁢y⁡x2+8⁢y⁡x2+x+2
→add initial condition
ⅆⅆx⁢y⁡x=4⁢x⁢y⁡x2+8⁢y⁡x2+x+2,y⁡1=0
→solve DE
y⁡x=12⁢tan⁡x2+4⁢x−5
Control-drag the right-hand side of the solution.
Context Panel: Plot Builder
12⁢tan⁡x2+4⁢x−5→
Factor the right-hand side of the differential equation (a prelude to separating variables)
Control-drag the right-hand side of the differential equation.
Context Panel: Factor
4 x y2+8⁢y2+x+2= factor 4⁢y2+1⁢x+2
<< Previous Example Section 5.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document